tensorflow学习笔记1:导出和加载模型

用一个非常简单的例子学习导出和加载模型;

导出

写一个y=a*x+b的运算,然后保存graph;

import tensorflow as tf
from tensorflow.python.framework.graph_util import convert_variables_to_constants

with tf.Session() as sess:
    a = tf.Variable(5.0, name='a')
    x = tf.Variable(6.0, name='x')
    b = tf.Variable(3.0, name='b')
    y = tf.add(tf.multiply(a,x),b, name="y")

    tf.global_variables_initializer().run()
    
    print (a.eval()) # 5.0
    print (x.eval()) # 6.0
    print (b.eval()) # 3.0
    print (y.eval()) # 33.0

    graph = convert_variables_to_constants(sess, sess.graph_def, ["y"])
    #writer = tf.summary.FileWriter("logs/", graph)
    tf.train.write_graph(graph, 'models/', 'test_graph.pb', as_text=False)

 

运行

在models目录下生成了test_graph.pb;

注:convert_variables_to_constants操作是将模型参数froze(保存)进graph中,这时的graph相当于是sess.graph_def + checkpoint,即有模型结构也有模型参数;

 

加载

 只加载,获取各个变量的值

import tensorflow as tf
from tensorflow.python.platform import gfile

with gfile.FastGFile("models/test_graph.pb", 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    output = tf.import_graph_def(graph_def, return_elements=['a:0', 'x:0', 'b:0','y:0'])
    #print(output)
    
with tf.Session() as sess:
    result = sess.run(output)
    print (result)

  

运行看以看到原本保存的结果(因为几个变量都已经带入模型,又从模型中加载了出来)

 

加载的时候修改变量值

5*2+3=13,结果正确

 

运行时修改变量值

加载时用一个占位符替掉x常量,在session运行时再给占位符填值;

5*3+3=18,也正确

 

修改计算结果

偷偷把结果给改了会怎么样?

呵呵,不知原因为何;以后钻进代码了再说;

 

参考:

https://www.sohu.com/a/233679628_468681

http://blog.163.com/wujiaxing009@126/blog/static/7198839920174125748893/

 

posted @ 2018-06-06 14:15  ZisZ  阅读(1426)  评论(0编辑  收藏  举报