bzoj2142 礼物——扩展卢卡斯定理

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142

前几天学了扩展卢卡斯定理,今天来磕模板!

这道题式子挺好推的(连我都自己推出来了) ,总之就是在 n 个里取 w[1] 个,剩下的里面再取 w[2] 个,再在剩下的里面取...

这里的模数 P 一看就不是质数啊!大组合数对合数取模,就要用到扩展卢卡斯定理了;

关于扩展卢卡斯定理,可以看这篇博客:https://blog.csdn.net/clove_unique/article/details/54571216

然后模仿这篇博客写的(感觉挺清晰的):https://www.cnblogs.com/elpsycongroo/p/7620197.html

扩展卢卡斯定理也没有想象中的那么难写嘛!

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int const maxn=1e5+5;
ll mod,n,m,w[10],sum,p[maxn],pk[maxn],cnt,r[maxn],x,y;
void divide(ll n)
{
    for(ll i=2;i*i<=n;i++)
        if(n%i==0)
        {
            p[++cnt]=i; pk[cnt]=1;
            while(n%i==0)pk[cnt]*=i,n/=i;
        }
    if(n>1)p[++cnt]=n,pk[cnt]=n;
}
ll pw(ll a,ll b,ll pk)
{
    ll ret=1;
    for(;b;b>>=1ll,a=(a*a)%pk)
        if(b&1)ret=(ret*a)%pk;
    return ret;
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
    if(!b){x=1; y=0; return;}
    exgcd(b,a%b,x,y);
    ll t=x; x=y; y=(t-a/b*y)%mod;
}
ll inv(ll n,ll pk)
{
    exgcd(n,pk,x,y); return (x%pk+pk)%pk;
}
ll fac(ll n,ll p,ll pk)// n! mod pk=p^k 且去掉 p 
{
    if(!n)return 1;
    ll ret=1;
    for(int i=1;i<=pk;i++) if(i%p) ret=(ret*i)%pk;//一个循环节 
    ret=pw(ret,n/pk,pk);
    for(int i=1;i<=n%pk;i++) if(i%p) ret=(ret*i)%pk;
    return (ret*fac(n/p,p,pk))%pk;//递归求剩余部分 
}
ll exlucas(ll n,ll m,ll p,ll pk)// C(n,m) mod pk=p^k
{
    if(n<m)return 0;
    ll a=fac(n,p,pk),b=fac(m,p,pk),c=fac(n-m,p,pk);
    ll k=0;//p的指数 
    for(ll i=n;i;i/=p)k+=i/p;
    for(ll i=m;i;i/=p)k-=i/p;
    for(ll i=n-m;i;i/=p)k-=i/p;
    return (((a*inv(b,pk))%pk*inv(c,pk))%pk*pw(p,k,pk))%pk;//a*p^k/(b*c)
}
ll CRT()//合并模数 
{
    ll M=1,ret=0;
    for(int i=1;i<=cnt;i++)M*=pk[i];//pk而不是p !!! 
    for(int i=1;i<=cnt;i++)
    {
        ll w=M/pk[i];
        ret=(ret+w*inv(w,pk[i])*r[i])%M;
    }
    return (ret%M+M)%M;//
}
ll exc(ll n,ll m)// C(n,m)
{
    if(n<m)return 0;
    for(int i=1;i<=cnt;i++)
        r[i]=exlucas(n,m,p[i],pk[i]);
    return CRT();
}
int main()
{
    scanf("%lld%lld%lld",&mod,&n,&m);
    for(int i=1;i<=m;i++)scanf("%lld",&w[i]),sum+=w[i];
    if(sum>n){printf("Impossible\n"); return 0;}
    divide(mod);
    ll ans=1;
    for(int i=1;i<=m;i++)
    {
        ans=(ans*exc(n,w[i]))%mod;
        n-=w[i];
    }
    printf("%lld\n",ans);
    return 0;
}

 

posted @ 2018-07-04 15:43  Zinn  阅读(214)  评论(0编辑  收藏  举报