bzoj4403 序列统计——组合数学

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4403

一开始想了个 O(n) 的做法,不行啊...

O(n)想法是这样的:先考虑递推,设 f[i][j] 为在第 i 个位置选第 j 个数字;

设 m = r-l+1;

那么 f[i][j] = ∑(1<=k<=j) f[i-1][k],初值是 f[1][i] = 1 (1<=i<=m);

那么 ans = ∑(1<=i<=n , 1<=j<=m) f[i][j];

这个式子换个角度想,可以考虑初值的1贡献了几次;

对于每个 f[1][j],发现它到 i=2 的位置贡献了 m - j 次,之后每次递推贡献了 ∑(1<=i<=m-j) i 次,也就是 C(m-j , 2) 次;

所以 ans = ∑(1<=i<=m) (C(i,2) * (n-2) + i) + m,其中最后加的 m 是 ∑(1<=i<=m) f[1][i];

但这个时间复杂度是 O(n) 的,不行啊...

然后看了博客:https://blog.csdn.net/Clove_unique/article/details/68491395

竟然是如此简洁!我就是太关注那个序列,其实只需要选出几个数,之后再排序就好了啊!!

需要预处理阶乘逆元,而且别忘了处理 0 的逆元。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int const mod=1e6+3;
int T,n,l,r,m;
ll ans,fac[mod+5],inv[mod+5];
ll pw(ll a,ll b)
{
    ll ret=1;
    for(;b;b>>=1,a=(a*a)%mod)
        if(b&1)ret=(ret*a)%mod;
    return ret;
}
void init()
{
    fac[0]=1;
    for(int i=1;i<mod;i++) fac[i]=(fac[i-1]*i)%mod;
    inv[mod-1]=pw(fac[mod-1],mod-2);//不能求 inv[mod] 
    for(int i=mod-2;i>=0;i--) inv[i]=(inv[i+1]*(i+1))%mod;//要处理出0的逆元! 
}
ll C(int n,int m)
{
    if(n<m)return 0;
//    ll a=1,b=1; m=min(m,n-m);
//    for(int i=n-m+1;i<=n;i++)a=(a*i)%mod;
//    for(int i=1;i<=m;i++)b=(b*i)%mod;
//    return (a*pw(b,mod-2))%mod;
    return ((fac[n]*inv[m])%mod*inv[n-m])%mod;
}
ll Lucas(ll n,ll m)
{
    if(m==0)return 1;
    return (C(n%mod,m%mod)*Lucas(n/mod,m/mod))%mod;
}
int main()
{
    init();
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&n,&l,&r); m=r-l+1;
        ll ans=Lucas((ll)n+m,m)-1;
        printf("%lld\n",(ans%mod+mod)%mod);//
    }
    return 0;
}

 

posted @ 2018-07-04 09:48  Zinn  阅读(220)  评论(0编辑  收藏  举报