bzoj 2178 圆的面积并 —— 辛普森积分
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2178
先看到这篇博客:https://www.cnblogs.com/heisenberg-/p/6740654.html
好像本应算弓形面积、三角形面积之类的,但不会...于是用辛普森积分硬做...
参考了这篇博客:https://blog.csdn.net/orpinex/article/details/7311363
然而如果写成精度友好型的 asr ( *15, /15, eps/2 ),或T或RE的,不精度友好反而好了...
为什么一开始传的范围是所有圆边界的 min, max 就会WA,传 -inf, inf 就A了...
总之写的时候还是尽量稳妥一点吧...
代码如下:
#include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; typedef double db; int const xn=1005,inf=2005; db const eps=1e-8; int n; bool tmp[xn]; struct N{int x,y,r;}c[xn]; struct S{db l,r;}seg[xn]; int rd() { int ret=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=0; ch=getchar();} while(ch>='0'&&ch<='9')ret=ret*10+ch-'0',ch=getchar(); return f?ret:-ret; } int dmp(db x) { if(fabs(x)<eps)return 0; else if(x>eps)return 1; else return -1; } db sqr(db x){return x*x;} bool cmp(S a,S b){return dmp(a.l-b.l)<0||(dmp(a.l-b.l)==0&&dmp(a.r-b.r)<0);} bool cmp2(N a,N b){return a.r<b.r;} db maxx(db x,db y){if(dmp(x-y)<0)return y; return x;} bool in(int a,int b){return sqr(c[a].x-c[b].x)+sqr(c[a].y-c[b].y)<=sqr(c[a].r-c[b].r);} void init() { sort(c+1,c+n+1,cmp2); for(int i=1;i<=n;i++) { for(int j=i+1;j<=n;j++) if(in(i,j)){tmp[i]=1; break;} } int tot=0; for(int i=1;i<=n;i++)if(!tmp[i])c[++tot]=c[i]; n=tot; } db f(db x) { int cnt=0; for(int i=1;i<=n;i++) { if(dmp(fabs(c[i].x-x)-c[i].r)>0)continue; db dis=sqrt(sqr(c[i].r)-sqr(x-c[i].x)); seg[++cnt].l=c[i].y-dis; seg[cnt].r=c[i].y+dis; } sort(seg+1,seg+cnt+1,cmp); db ret=0,r=-inf; for(int i=1;i<=cnt;i++) { if(dmp(seg[i].l-r)>0)ret+=seg[i].r-seg[i].l,r=seg[i].r; else if(dmp(seg[i].r-r)>0)ret+=seg[i].r-r,r=seg[i].r; } return ret; } db simp(db l,db r){return (r-l)/6*(f(l)+4*f((l+r)/2)+f(r));} db asr(db l,db r,db eps,db lst) { db mid=(l+r)/2; db ls=simp(l,mid),rs=simp(mid,r); if(fabs(ls+rs-lst)<=15*eps)return ls+rs+(ls+rs-lst)/15; return asr(l,mid,eps/2,ls)+asr(mid,r,eps/2,rs); } db asr(db l,db r,db lst) { db mid=(l+r)/2; db ls=simp(l,mid),rs=simp(mid,r); if(fabs(ls+rs-lst)<=eps)return ls+rs; return asr(l,mid,ls)+asr(mid,r,rs); } int main() { n=rd(); int L=inf,R=-inf; for(int i=1;i<=n;i++) c[i].x=rd(),c[i].y=rd(),c[i].r=rd(), L=min(L,c[i].x-c[i].r),R=max(R,c[i].x+c[i].r); init(); //printf("%.3f\n",asr(L,R,eps,simp(L,R))); //printf("%.3f\n",asr(L,R,simp(L,R))); printf("%.3f\n",asr(-inf,inf,simp(-inf,inf))); //printf("%.3f\n",asr(-inf,inf,eps,simp(-inf,inf))); return 0; }
然而这样其实会错HAHA,随便来个数据竟然就错了:
3
0 0 1
0 0 1
100 100 1
应该输出 6.283,但上面的代码以及许多题解输出都是 3.142 ...
于是换了一种写法,对每个连续段做积分,这样避免了空白区域对积分结果的影响;
而且发现求一次 f(x) 很慢,所以之前求过的尽量重复利用;
然后就T了,调了两小时...
TLE 的原因竟然是 sort 里面传了 cmp() 函数??!!!如果改成重载结构体小于号,就不T了呵呵-_-
所以还是要注意代码习惯阿。
代码如下:
#include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; typedef double db; int const xn=1005,inf=2005; db const eps=1e-13; int n,st,ed,xl[xn],xr[xn]; bool tmp[xn]; struct N{ int x,y,r; bool operator < (const N &b) const {return r<b.r;} }c[xn]; struct S{ db l,r; bool operator < (const S &b) const {return l<b.l;} }seg[xn]; int rd() { int ret=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=0; ch=getchar();} while(ch>='0'&&ch<='9')ret=ret*10+ch-'0',ch=getchar(); return f?ret:-ret; } db sqr(db x){return x*x;} //bool cmp(S a,S b){return a.l<b.l;} //bool cmp2(N a,N b){return a.r<b.r;} bool cmp3(N a,N b){return a.x-a.r<b.x-b.r;} bool in(int a,int b){return sqr(c[a].x-c[b].x)+sqr(c[a].y-c[b].y)<=sqr(c[a].r-c[b].r);} void init() { sort(c+1,c+n+1);//cmp2 for(int i=1;i<=n;i++) { for(int j=i+1;j<=n;j++) if(in(i,j)){tmp[i]=1; break;} } int tot=0; for(int i=1;i<=n;i++)if(!tmp[i])c[++tot]=c[i]; n=tot; sort(c+1,c+n+1,cmp3);// } db f(db x) { int cnt=0; for(int i=st;i<=ed;i++) { if(xl[i]>=x||xr[i]<=x)continue; db dis=sqrt(c[i].r-sqr(x-c[i].x));//(sqr) seg[++cnt].l=c[i].y-dis; seg[cnt].r=c[i].y+dis; } sort(seg+1,seg+cnt+1);//cmp db ret=0,r=-inf; for(int i=1,j;i<=cnt;i=j) { r=seg[i].r; for(j=i+1;j<=cnt&&seg[j].l<=r;j++) if(r<seg[j].r)r=seg[j].r; ret+=r-seg[i].l; } return ret; } db simp(db len,db fl,db fr,db fm){return len/6*(fl+4*fm+fr);} db asr(db l,db r,db mid,db fl,db fr,db fm,db lst) { db lmid=(l+mid)/2,flm=f(lmid),rmid=(mid+r)/2,frm=f(rmid); db ls=simp(mid-l,fl,fm,flm),rs=simp(r-mid,fm,fr,frm); if(fabs(ls+rs-lst)<=eps)return ls+rs; return asr(l,mid,lmid,fl,fm,flm,ls)+asr(mid,r,rmid,fm,fr,frm,rs); } int main() { n=rd(); for(int i=1;i<=n;i++) c[i].x=rd(),c[i].y=rd(),c[i].r=rd(); init(); db ans=0; for(int i=1;i<=n;i++) xl[i]=c[i].x-c[i].r,xr[i]=c[i].x+c[i].r,c[i].r=c[i].r*c[i].r; for(int i=1,j;i<=n;i=j) { int l=xl[i],r=xr[i]; for(j=i+1;xl[j]<=r&&j<=n;j++)if(xr[j]>r)r=xr[j]; st=i; ed=j-1; db mid=(l+r)/2; db fl=f(l),fm=f(mid),fr=f(r); ans+=asr(l,r,mid,fl,fr,fm,simp(r-l,fl,fr,fm)); } printf("%.3f\n",ans); return 0; }