均匀三角滤波器的实现

均匀三角滤波器

使用这种滤波器带,可以获得沿频率轴具有相同频率分辨率的带通能量谱。
1.创建一个均匀三角滤波器,该滤波器包含60个频段。

import numpy as np
import librosa
import librosa.display
import matplotlib.pyplot as plt


ax = plt.gca()
#去掉边框
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
#移位置 设为原点相交
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))

def create_filter(fs, nfft,fl, fh, count):
    p = count      #滤波器个数
    B = fh-fl
    Fb = np.linspace(0,B,p+2)# 将频率等间隔
    #print(Fb)
    W2 = int(nfft / 2 + 1)
    df = fs/nfft
    freq = []#采样频率值
    for n in range(0,W2):
        freqs = int(n*df)
        freq.append(freqs)
    bank = np.zeros((p,W2))
    for k in range(1,p+1):
        f1 = Fb[k-1]
        f2 = Fb[k+1]
        f0 = Fb[k]
        n1=np.floor(f1/df)
        n2=np.floor(f2/df)
        n0=np.floor(f0/df)
        for i in range(1,W2):
            if i>=n1 and i<=n0:
                bank[k-1,i]=(i-n1)/(n0-n1)
            elif i>n0 and i<=n2:
                bank[k-1,i]=(n2-i)/(n2-n0)


        plt.plot(freq,bank[k-1,:],'r')
    plt.xlabel("Frequency(Hz)")
    plt.ylabel("Filter weighting")
    plt.show()


if __name__ == '__main__':
    audio_file = './phoneme/ps_1&ps_org_1/ps_org_1/a1_ps_org_1.wav_00:00:00.320000-00:00:00.380000.wav'
    y, sr = librosa.load(audio_file, sr=16000, mono=False)
    nfft = 512
    create_filter(sr, nfft, 0, sr / 2, 60)


2.使用均匀三角滤波器对音频信号进行过滤,得到各频段的能量谱。

bank = create_filter(sr, NFFT, 0, sr / 2, 60)
filter_banks = np.dot(pow_frames, bank.T) #pow_frames为原始音频的能量


from random import sample
import matplotlib.pyplot as plt
import librosa
import numpy as np
import python_speech_features as psf
import librosa
import librosa.display
import os
from scipy.fft import fft

# Step 1: 预加重
# Step 2: 分帧
# Step 3: 加窗
# Step 4: FFT
# Step 5: 幅值平方
# Step 6: 对数功率



plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # 指定默认字体
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题



##################################1.预加重################################
def preemphasis(signal, coeff=0.95):
    return np.append(signal[1], signal[1:] - coeff * signal[:-1])

##################################2.均匀梅尔滤波器组################################
def create_filter(fs, nfft,fl, fh, count):
    p = count      #滤波器个数
    B = fh-fl
    Fb = np.linspace(0,B,p+2)# 将频率等间隔
    # print(Fb)
    W2 = int(nfft / 2 + 1)
    df = fs/nfft
    freq = []#采样频率值
    for n in range(0,W2):
        freqs = int(n*df)
        freq.append(freqs)
    bank = np.zeros((p,W2))
    for k in range(1,p+1):
        f1 = Fb[k-1]
        f2 = Fb[k+1]
        f0 = Fb[k]
        n1=np.floor(f1/df)
        n2=np.floor(f2/df)
        n0=np.floor(f0/df)
        for i in range(1,W2):
            if i>=n1 and i<=n0:
                bank[k-1,i]=(i-n1)/(n0-n1)
            elif i>n0 and i<=n2:
                bank[k-1,i]=(n2-i)/(n2-n0)
    #     plt.plot(freq,bank[k-1,:],'r')
    # plt.xlabel("Frequency(Hz)")
    # plt.ylabel("Filter weighting")
    # plt.show()
    return bank




if __name__ == '__main__':
    dir=r"/Users/zhangxiao/lab_work/phoneme/ps_all/i2/"
    filenames=os.listdir(dir)
    filenames.sort()        
    for fileName in filenames:
        if os.path.splitext(fileName)[1] == '.wav':
            print(fileName)
            audio_file = dir + fileName
            y, sr = librosa.load(audio_file, sr=16000, mono=False)
            time = len(y) * 1.0 /sr
            print("总秒数:",time)
            #信号采样总数
            tmax = time
            tmin = 0
            n = int((tmax-tmin)*sr) #信号一共的sample数量
            #预加重前的信号频谱
            freq = sr/n * np.linspace(0,int(n/2),int(n/2)+1)
            print("频率长度",len(freq))

            #预加重
            emphasized_y = preemphasis(y, coeff=0.98)
            
            #预加重后的信号频谱
            plt.plot(freq, np.absolute(np.fft.rfft(emphasized_y,n)**2)/n)
            plt.xlim(0,8000)
            plt.title(fileName.split('.')[0]+'预加重后语音信号频谱图')
            plt.xlabel('Frequency/Hz',fontsize=14)
            plt.show()
            # plt.savefig(path + fileName.split('_')[0]+'语音信号频谱图')
            plt.close()

            #分帧
            frame_size, frame_stride = 0.025,0.01
            frame_length, frame_step = int(round(sr*frame_size)),int(round(sr*frame_stride))
            signal_length = (tmax-tmin)*sr
            print("signal_length", signal_length)
            frame_num = int(np.ceil((signal_length-frame_length)/frame_step))+1 #向上舍入
            print("帧数", frame_num)
            pad_frame =(frame_num-1)*frame_step + frame_length-signal_length #不足的部分补零
            pad_y = np.append(emphasized_y,np.zeros(int(pad_frame)))
            signal_len = signal_length+pad_frame

            #加窗
            indices = np.tile(np.arange(0, frame_length), (frame_num, 1)) + np.tile(
            np.arange(0, frame_num * frame_step, frame_step), (frame_length, 1)).T
            frames = pad_y[indices] #frame的每一行代表每一帧的sample值
            print(frames.shape)
            frames *= np.hamming(frame_length) #加hamming window 注意这里不是矩阵乘法   

            #求功率谱 将多帧的功率谱 进行拼接得到的功率谱
            NFFT = 512 #frame_length=400,所以用512足够了
            mag_frames = np.absolute(np.fft.rfft(frames,NFFT))
            pow_frames = mag_frames**2/NFFT
            print(pow_frames.shape)
            plt.imshow(20*np.log10(pow_frames.T), cmap=plt.cm.jet, aspect='auto', extent=(0, frame_num, 0, 256))
            plt.yticks([0,64, 128, 192, 256],  sr * np.array([0, 64, 128, 192, 256]) / NFFT)
            plt.colorbar()
            plt.title(fileName.split('.')[0]+'语音信号对数谱图')
            plt.xlabel('帧数')
            plt.ylabel('频率(赫兹)')
            plt.show()
            # plt.savefig(path + fileName.split('_')[0]+'语音信号对数谱图')
            plt.close()

            #均匀梅尔滤波
            bank = create_filter(sr, NFFT, 0, sr / 2, 60)
            filter_banks = np.dot(pow_frames, bank.T)
            # filter_banks = np.where(filter_banks == 0, np.finfo(float).eps, filter_banks) #均值归一化
            filter_banks = 20 * np.log10(filter_banks.T)
            print(filter_banks.shape)
            plt.imshow(filter_banks, cmap=plt.cm.jet, aspect='auto', extent=(0, frame_num, 0, 256))
            plt.yticks([0,64, 128, 192, 256],  sr * np.array([0, 64, 128, 192, 256]) / NFFT)
            plt.colorbar()
            plt.title(fileName.split('.')[0]+'滤波后的语音信号对数谱图')
            plt.xlabel('帧数')
            plt.ylabel('频率(赫兹)')
            plt.show()
            # plt.savefig(path + fileName.split('_')[0]+'语音信号对数谱图')
            plt.close()
posted @ 2022-04-12 10:27  张宵  阅读(566)  评论(0编辑  收藏  举报