深度优先搜索 & 广度优先搜索
邻接表
邻接表的深度优先搜索
假如我们有如下无向图
如果我们想对其进行深度优先遍历的话, 其实情况不止一种, 比如 0 1 2 5 7 6 4 3
下面介绍使用临接表法对其进行遍历, 一般邻接表长下面这样:
**思路: ** 参照上下两图我们可以发现, 邻接表中的左半部分是一个链表数组, 0-6 一共7个位置, 每一个位置上都对应一个链表, 比如 下面的 位置0 , 表示它是第一个节点, 右边的链表中的node1 和 node3 分别表示他们的位置0处节点的相邻节点,
深度优先就是一条路走到黑, 走不下去了就往回退, 所以通常使用递归;
思路:
比如我们从node0开始, 然后可以往node1 也可以往node3 , 随便选一个 node1 , 再从node1开始往下走, 我们可以到node2 或者 node4 --- 这种走法结合上图来看, 翻译一下就是下面这样
- 打印当前节点值
- 标记当前节点被访问过
- 遍历当前节点的邻接表
- 如果邻接表中的元素曾经被访问过, 跳过
- 如果邻接表中的节点未被访问过, 就 重复123过程
封装邻接表
public class Graph {
private int size;
// 链表数组实现邻接表
private LinkedList<Integer> list[];
public Graph(int size) {
this.size = size;
list = new LinkedList[size];
for (int i = 0; i < size; i++) {
list[i] = new LinkedList<>();
}
}
/**
* 接收两个顶点 , 添加边
*
* @param a
* @param b
*/
public void addEdge(int a, int b) {
list[a].add(b);
list[b].add(a);
}
public static void main(String[] args) {
Graph graph = new Graph(8);
graph.addEdge(0, 1);
graph.addEdge(0, 3);
graph.addEdge(1, 2);
graph.addEdge(1, 4);
graph.addEdge(2, 5);
graph.addEdge(4, 5);
graph.addEdge(4, 6);
graph.addEdge(5, 7);
graph.addEdge(6, 7);
graph.dfs(0);
}
}
深度优先遍历
public void dfs(int start) {
boolean[] visited = new boolean[this.size];
dodfs(start, this.list, visited);
}
/**
* 递归深度搜索
*
* @param list
* @param visited
*/
private void dodfs(int start, LinkedList<Integer>[] list, boolean[] visited) {
// 检查当前节点有没有被访问过
if (visited[start]) {
return;
}
System.out.println(start);
visited[start] = true;
for (int i = 0; i < this.list[start].size(); i++) {
int node = this.list[start].get(i);
dodfs(node, list, visited);
}
}
邻接表的广度优先搜索
还是看这个图, 广度优先遍历的话,就是按层遍历 , 比如 0 1 3 2 4 5 6 7
其实这样的话再不能使用递归设计函数了, 其实我当时应该能判断出来, 递归的话容易往图的一边跑, 一边遍历完事后才可能进行另一面的遍历, 可惜了,被问蒙了...
广度优先的思路:
使用一个队列来辅助完成, 思路如下
- 将当前节点添加进队列
- 打印当前节点的值
- 遍历当前节点的邻接表中的节点
- 如果节点曾经被访问过, 跳过,不处理他
- 如果当前节点没有被访问过, 并且队列中现在没有这个节点, 就将它添加进队列
- 移除并得到 头节点
- 将头结点在辅助数组visited中的标记 置为 true , 标识这个节点被访问过了
- 更新位置标记, 什么标记呢? 就是当前队列头位置的node , 在邻接表中的位置
代码如下:
/**
* 广度优先搜索
*
* @param start
*/
public void bfs(int start) {
boolean[] visited = new boolean[this.size];
dobfs(start, visited, this.list);
}
/**
* 广度优先搜索
*
* @param start
* @param visited
* @param list
*/
private void dobfs(int start, boolean[] visited, LinkedList<Integer>[] list) {
Queue<Integer> queue = new LinkedList<>();
queue.add(start);
while (queue.size() > 0) {
// 打印当前的节点
System.out.println(queue.peek());
for (int i = 0; i < this.list[start].size(); i++) {
if (visited[this.list[start].get(i)]) {
continue;
}
/**
* 解决下面情况
* 1
* / \
* 2 3
* \ /
* 5
*/
if (!queue.contains(this.list[start].get(i))){
queue.add(this.list[start].get(i));
}
}
// 移除头结点
Integer poll = queue.poll();
visited[poll] = true;
// 更新start值
if (queue.size() > 0) {
start = queue.peek();
}
}
}
临接数组
临接数组的深度优先搜索
**什么是临接数组? **
如下图:
转换成临接矩阵长下面这样, 很清晰的可以看出, 左下角和右上角是对称的, 怎么解读下面的图形呢?
它其实就是一个二维数组 int [权重][X]
二维数组可以理解成数组嵌套数组, 因此前面的 X 其实对应的下图中的一行, 即 一个小数组
- 最左边的 纵向坐标是 0 1 2 3 分别表示当前节点的 权值
- 下图中的每一行都代表着前面的权值对应的 临接点的数量
- 0 表示不是它的临接点 , 1 表示是临接点
创建邻接表的代码如下
public class Graph1 {
//顶点数
private int numVertexes;
// 边数
private int numEdges;
// 记录顶点
int[] vertexes;
// 二维数组图
private int[][] points;
// 用于标记某个点是否被访问过的 辅助数组
private boolean[] visited;
private Scanner scanner = new Scanner(System.in);
public Graph1(int numVertexes, int numEdges) {
this.numEdges = numEdges;
this.numVertexes = numVertexes;
// 初始化邻接矩阵
this.points = new int[numVertexes][numVertexes];
// 初始化存放顶点的数组
this.vertexes = new int[numVertexes];
// 标记已经访问过的数组
this.visited = new boolean[this.numVertexes];
}
// 构建无向图
public int[][] buildGraph() {
System.out.println("请输入顶点的个数");
this.numVertexes = scanner.nextInt();
System.out.println("请输入边数");
this.numEdges = scanner.nextInt();
// 构建临接矩阵
for (int i = 0; i < this.numEdges; i++) {
System.out.println("请输入点(i,j)的 i 值");
int i1 = scanner.nextInt();
System.out.println("请输入点(i,j)的 j 值");
int j1 = scanner.nextInt();
this.points[i1][j1] = 1;
this.points[j1][i1] = 1;
}
return this.points;
}
深度优先搜索
思路: 深度优先依然使用递归算法
- 打印当前节点的值
- 标记当前节点已经被访问过了
- 遍历当前节点的临接矩阵
- 如果发现遍历的节点为0 , 不处理, 继续遍历
- 如果发现遍历的节点为1 , 但是已经被标记访问过了, 不处理, 继续遍历
- 如果发现节点值为1 , 且没有被访问过, 递归重复123步骤
/**
* 深度搜索
*
* @param arr 待搜索的数组
* @param value 顶点上的值
*/
public void dfs(int[][] arr, int value) {
System.out.println(value);
visited[value] = true;
for (int i = 0; i < arr.length; i++) {
if (arr[value][i] != 0 && !visited[i]) {
dfs(arr, i);
}
}
}
临接数组的广度优先搜索
思路: 广度优先遍历临接矩阵和上面说的邻接表大致相同, 同样需要一个辅助队列
- 将头结点添加到队列中
- 打印头结点的值
- 遍历头结点的临接矩阵
- 如果发现遍历的节点为0 , 不处理, 继续遍历
- 如果发现遍历的节点为1 , 但是已经被标记访问过了, 不处理, 继续遍历
- 如果发现节点值为1 , 且没有被访问过, 且队列中没有这个值 , 重复 123步骤
/***
* 广度优先遍历
*
* @param arr
* @param headValue
*/
public void bfs(int[][] arr, int headValue) {
Queue<Integer> queue = new LinkedList<>();
queue.add(headValue);
while (queue.size() > 0) {
System.out.println(queue.peek());
for (int i = 0; i < arr[headValue].length; i++) {
if (arr[headValue][i] == 1&&!visited[i]&&!queue.contains(i)) {
queue.add(i);
}
}
// 头节点出队
Integer poll = queue.poll();
visited[poll]=true;
// 更新headValue;
if (queue.size()>0){
headValue=queue.peek();
}
}
}
二叉树
假设我们有下面这个二叉树,
下面我们使用不同的方式遍历它, 如果是深度优先的话, 情况依然是不确定的, 只要是符合一条路走到头, 没路可走再回退就ok , 比如 1 3 6 5 2 3 4
二叉树的深度优先搜索
下面使用java提供的栈这个数据结构辅助完成遍历的过程
**思路: **
- 将头节点压入栈
- 弹出栈顶的元素
- 打印弹出的栈顶的元素的值
- 处理栈顶元素的子节点
- 如果存在左子节点, 将做子节点压入栈
- 如果存在右子节点, 将右子节点压入栈
- 重复 2 3 4 过程...
/**
* 深度优先搜索
* @param node
*/
private static void dfs( Node node) {
Stack<Node> stack = new Stack();
stack.push(node);
while (!stack.isEmpty()) {
Node pop = stack.pop();
System.out.println(pop.getValue());
if (pop.getLeftNode()!=null){
stack.push(pop.getLeftNode());
}
if (pop.getRightNode()!=null){
stack.push(pop.getRightNode());
}
}
}
二叉树的广度优先搜索
思路: 广度优先遍历 同样是借助于辅助队列
- 将顶点添加进队列
- 打印这个节点的值
- 处理当前这个压入栈的左右子节点
- 如果存在左节点, 将左节点存入队列
- 如果存在右节点, 将右节点存入队列
- 将头结点出队
- 重复 2 3 4过程
/**
* 广度优先搜索
* @param node
*/
private static void bfs( Node node) {
Queue<Node> queue = new LinkedList<>();
queue.add(node);
while (queue.size()>0){
System.out.println(queue.peek().getValue());
// 将左右节点入队
if (queue.size()>0){
Node nd = queue.poll();
if (nd.getLeftNode()!=null){
queue.add(nd.getLeftNode());
}
if (nd.getRightNode()!=null){
queue.add(nd.getRightNode());
}
}
}
}