最长上升子序列

题目描述:

一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).

你的任务,就是对于给定的序列,求出最长上升子序列的长度。

 

输入:

输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。

 

输出:

最长上升子序列的长度。

 

样例输入:

7
1 7 3 5 9 4 8

 

样例输出:

4

 

这是一道DP中比较难的一道了,先给代码再解释:

#include<cstdio>
    #include<algorithm>
    #define N 1000010
    using namespace std;
    long long n,a[N],b[N],nw;
    int main()
    {
    scanf("%d",&n);
    for (int i=1;i<=n;i++)
    scanf("%d",&a[i]);
    b[0]=-1000000007;
    for (int i=1;i<=n;i++)
    {
        if (b[nw]<a[i])
            b[++nw]=a[i];
        else
        {
            int d=lower_bound(b+1,b+nw,a[i])-b;
            b[d]=a[i];
        }
    }
    printf("%d\n",nw);
    return 0;
    }

这个代码里有很多要讲的啊:
lower_bound的意思是在b+1到b+nw这一序列中找到不小于a[i]的第一个数,那么减去b就是这个数的位置(下标喽),当然,用upper_bound也行啊。
这里的宏定义就不用解释了吧……
别忘了把b[0]初始一下哈……还是那句:否则后果自负。
其实这代码写得不像是DP的代码,那就当学了一道题吧;关于运算过程,看代码就能看懂哦。

posted @ 2017-12-19 19:59  Zhoier  阅读(197)  评论(0编辑  收藏  举报