贪婪算法、递归计算、动态规划背包问题
//贪婪算法计算背包问题 public static double ksack(double[] values, double[] weights, int capacity) { double load = 0; int i = 0; double w = 0; while (load<capacity && i<values.Length) { if (weights[i] <= (capacity-load)) { w += values[i]; load += weights[i]; } else { double r = (capacity - load) / weights[i]; w += r * values[i]; load += weights[i]; } i++; } return w; }
//递归计算背包问题 public static int max(int a, int b) { return a > b ? a : b; } public static int knapsack(int cappcity, int[] size, int[] value, int n) { if (n == 0 || cappcity == 0) { return 0; } if (size[n - 1] > cappcity) { return knapsack(cappcity, size, value, n - 1); } else { return max(value[n - 1] + knapsack(cappcity - size[n - 1], size, value, n - 1), knapsack(cappcity, size, value, n - 1)); } }
//动态规划背包问题 public static long dKnapsack(int cappcity, int[] size, int[] value, int n) { int[,] K = new int[n, cappcity + 1]; for (int i = 0; i < n; i++) { for (int j = 0; j < cappcity; j++) { K[i, j] = 0; } } for (int i = 0; i < n; i++) { for (int w = 0; w < cappcity; w++) { if (i == 0 || w == 0) { K[i,w] = 0; } else if (size[i - 1] <= w) { K[i,w] = max(value[i - 1] + K[i - 1,w-size[i-1]], K[i - 1,w]); } else { K[i,w] = K[i - 1,w]; } } } return K[n,cappcity]; }
好好学习,天天向上。