Codeforces Round #704 (Div. 2) A~C题解

写在前边

链接:Codeforces Round #704 (Div. 2)
D就不补了,大fst场。

A. Three swimmers

链接:A题链接

题目大意:

给定三个游泳者的到达岸边的周期,\(a,b,c\),而你到达岸边的时间为\(p\),现在问你到达岸边后最少需要多少时间能遇到一名游泳者。

思路

老套路题了,公式:

\[res = min(\lceil \cfrac{p}{a} \rceil * a, \lceil \cfrac{p}{b} \rceil * b, \lceil \cfrac{p}{c} \rceil * c) - p \]

注意,写代码的时候\((p + a - 1) / a * a\)\(a * (p + a - 1) / a\)获得的结果也不一样,前一种正确。

代码:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <unordered_map>

using namespace std;

#define Inf 0x3f3f3f3f
#define PII pair<int, int>
#define P2LL pair<long long, long long>
#define endl '\n'

typedef long long LL;
typedef unsigned long long ULL;
typedef vector<long long> VLL;
typedef vector<int> VI;

void solve() {
    LL p, a, b, c;
    cin >> p >> a >> b >> c;
    LL a1, b1, c1;
    a = (p + a - 1) / a * a;
    b = (p + b - 1) / b * b;
    c = (p + c - 1) / c * c;

    cout << min(a, min(b, c)) - p << endl;
}

int main()
{
    //ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int t;
    cin >> t;
    while (t--) {
        solve();
    }

    return 0;
} 

B. Card Deck

链接:B题链接

题目大意:

一副扑克盘,从上往下拿,截止点作为新牌的起点,会形成一种新的顺序,使得这种顺序权值最大,计算权值公式:

\[\sum\limits_{i = 1}^n n^{n - i} * p_i \]

思路

把公式展开后就得出让新的牌须变成字典序最大即可,那么我们就每一次以剩余的最大数作为截止点拿牌,形成新的顺序,一开始就想到这种方法了,但是复杂度想成了\(O(n^2)\)没敢做,于是看题解后,做的也是这种方法,于是想了一下复杂度并不是\(O(n^2)\),最坏是是\(O(n + n)\)

代码:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <map>
#include <cstring>
#include <set>

//#pragma GCC optimize(2)
//#pragma GCC optimize(3,"Ofast","inline")

using namespace std;

#define Inf 0x3f3f3f3f
#define PII pair<int, int>
#define P2LL pair<long long, long long>
#define endl '\n'

typedef long long LL;
typedef unsigned long long ULL;
typedef vector<long long> VLL;
typedef vector<int> VI;

const int Mod = 10000007;

LL gcd(LL a, LL b) {
    return b ? gcd(b, a % b) : a;
}

const int N = 1e5 + 10;
int a[N];

void solve() {
    int n;
    scanf("%d", &n);
    
    for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
    
    set<int> st;
    vector<int> rem;
    for (int i = 1; i <= n; i++) st.insert(i);

    int maxn = n;
    for (int i = n; i >= 1; i--) {
        rem.push_back(a[i]);
        st.erase(a[i]);
        if (a[i] == maxn) {
            reverse(rem.begin(), rem.end());
            for (auto &it : rem) cout << it << " ";
            rem.clear();
            if (st.size()) maxn = *(--st.end());
        }
    }
    cout << endl;
}

int main()
{
    //ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
    int t;
    scanf("%d", &t); 
    while (t--) {
        solve();
    }
    return 0;
}

C. Maximum width

链接:C题链接

题目大意:

给定一个长度分别为\(n,m\)的字符串\(s,t\),同时可以得到一个序列\(p\)\(1 \leq p_1 \leq p_2 \leq p_3 \leq ... \leq n\),使得\(s_{p_i} = t_i\)对于所有的\(s[1, m]\),让我们构造以\(p\)得到一个\(\max\limits_{1 \leq i \leq m} (p_{i + 1} - p_i)\)

思路

每次做这种题都会让坐标烦,这道题仔细抠一下题意就是在\(s\)中找到一个\(t\),并使得\(t\)\(s\)中相邻两个字母的坐标差最大,那么可以分别从前边可后边维护两个数组\(f,g\)\(f_i\)表示\(t_i\)在s中最左侧位置下标,\(g_i\)就表示\(t_i\)\(s\)中最右侧位置的下边,那么答案就是\(\max\limits_{1 \leq i \leq {m - 1}} (g_{i + 1} - f_i)\)

代码:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <unordered_map>

using namespace std;

#define Inf 0x3f3f3f3f
#define PII pair<int, int>
#define P2LL pair<long long, long long>
#define endl '\n'

typedef long long LL;
typedef unsigned long long ULL;
typedef vector<long long> VLL;
typedef vector<int> VI;

const int N = 2e5 + 10;
char s[N], t[N];
int f[N], g[N];

void solve() {
    int n, m;
    scanf("%d%d", &n, &m);
    scanf("%s", s + 1);
    scanf("%s", t + 1);

    int cnt = 1;
    for (int i = 1; i <= m; i++) {
        while (s[cnt] != t[i]) cnt++;
        f[i] = cnt;
        cnt++;
    }

    cnt = n;
    for (int i = m; i >= 1; i--) {
        while (s[cnt] != t[i]) cnt--;
        g[i] = cnt;
        cnt--;
    }

    int res = 0;
    for (int i = 1; i <= m - 1; i++) res = max(res, g[i + 1] - f[i]);
    printf("%d\n", res);
}

int main()
{
    solve();
    return 0;
} 
posted @ 2021-03-02 19:34  Xxaj5  阅读(76)  评论(0编辑  收藏  举报