Codeforces Round #704 (Div. 2) A~C题解
写在前边
链接:Codeforces Round #704 (Div. 2)
D就不补了,大fst场。
A. Three swimmers
链接:A题链接
题目大意:
给定三个游泳者的到达岸边的周期,\(a,b,c\),而你到达岸边的时间为\(p\),现在问你到达岸边后最少需要多少时间能遇到一名游泳者。
思路:
老套路题了,公式:
注意,写代码的时候\((p + a - 1) / a * a\) 与\(a * (p + a - 1) / a\)获得的结果也不一样,前一种正确。
代码:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <unordered_map>
using namespace std;
#define Inf 0x3f3f3f3f
#define PII pair<int, int>
#define P2LL pair<long long, long long>
#define endl '\n'
typedef long long LL;
typedef unsigned long long ULL;
typedef vector<long long> VLL;
typedef vector<int> VI;
void solve() {
LL p, a, b, c;
cin >> p >> a >> b >> c;
LL a1, b1, c1;
a = (p + a - 1) / a * a;
b = (p + b - 1) / b * b;
c = (p + c - 1) / c * c;
cout << min(a, min(b, c)) - p << endl;
}
int main()
{
//ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int t;
cin >> t;
while (t--) {
solve();
}
return 0;
}
B. Card Deck
链接:B题链接
题目大意:
一副扑克盘,从上往下拿,截止点作为新牌的起点,会形成一种新的顺序,使得这种顺序权值最大,计算权值公式:
思路:
把公式展开后就得出让新的牌须变成字典序最大即可,那么我们就每一次以剩余的最大数作为截止点拿牌,形成新的顺序,一开始就想到这种方法了,但是复杂度想成了\(O(n^2)\)没敢做,于是看题解后,做的也是这种方法,于是想了一下复杂度并不是\(O(n^2)\),最坏是是\(O(n + n)\)
代码:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <map>
#include <cstring>
#include <set>
//#pragma GCC optimize(2)
//#pragma GCC optimize(3,"Ofast","inline")
using namespace std;
#define Inf 0x3f3f3f3f
#define PII pair<int, int>
#define P2LL pair<long long, long long>
#define endl '\n'
typedef long long LL;
typedef unsigned long long ULL;
typedef vector<long long> VLL;
typedef vector<int> VI;
const int Mod = 10000007;
LL gcd(LL a, LL b) {
return b ? gcd(b, a % b) : a;
}
const int N = 1e5 + 10;
int a[N];
void solve() {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
set<int> st;
vector<int> rem;
for (int i = 1; i <= n; i++) st.insert(i);
int maxn = n;
for (int i = n; i >= 1; i--) {
rem.push_back(a[i]);
st.erase(a[i]);
if (a[i] == maxn) {
reverse(rem.begin(), rem.end());
for (auto &it : rem) cout << it << " ";
rem.clear();
if (st.size()) maxn = *(--st.end());
}
}
cout << endl;
}
int main()
{
//ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
int t;
scanf("%d", &t);
while (t--) {
solve();
}
return 0;
}
C. Maximum width
链接:C题链接
题目大意:
给定一个长度分别为\(n,m\)的字符串\(s,t\),同时可以得到一个序列\(p\),\(1 \leq p_1 \leq p_2 \leq p_3 \leq ... \leq n\),使得\(s_{p_i} = t_i\)对于所有的\(s[1, m]\),让我们构造以\(p\)得到一个\(\max\limits_{1 \leq i \leq m} (p_{i + 1} - p_i)\)。
思路:
每次做这种题都会让坐标烦,这道题仔细抠一下题意就是在\(s\)中找到一个\(t\),并使得\(t\)在\(s\)中相邻两个字母的坐标差最大,那么可以分别从前边可后边维护两个数组\(f,g\),\(f_i\)表示\(t_i\)在s中最左侧位置下标,\(g_i\)就表示\(t_i\)在\(s\)中最右侧位置的下边,那么答案就是\(\max\limits_{1 \leq i \leq {m - 1}} (g_{i + 1} - f_i)\)
代码:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <unordered_map>
using namespace std;
#define Inf 0x3f3f3f3f
#define PII pair<int, int>
#define P2LL pair<long long, long long>
#define endl '\n'
typedef long long LL;
typedef unsigned long long ULL;
typedef vector<long long> VLL;
typedef vector<int> VI;
const int N = 2e5 + 10;
char s[N], t[N];
int f[N], g[N];
void solve() {
int n, m;
scanf("%d%d", &n, &m);
scanf("%s", s + 1);
scanf("%s", t + 1);
int cnt = 1;
for (int i = 1; i <= m; i++) {
while (s[cnt] != t[i]) cnt++;
f[i] = cnt;
cnt++;
}
cnt = n;
for (int i = m; i >= 1; i--) {
while (s[cnt] != t[i]) cnt--;
g[i] = cnt;
cnt--;
}
int res = 0;
for (int i = 1; i <= m - 1; i++) res = max(res, g[i + 1] - f[i]);
printf("%d\n", res);
}
int main()
{
solve();
return 0;
}