[LeetCode] 834. Sum of Distances in Tree
Description
An undirected, connected treewith N nodes labelled 0...N-1 and N-1 edges are given.
The ith edge connects nodes edges[i][0]
and edges[i][1] together.
Return a list ans, where ans[i] is the sum of the distances between node i and all other nodes.
Example 1:
Input: N = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]]
Output: [8,12,6,10,10,10]
Explanation:
Here is a diagram of the given tree:
0
/ \
1 2
/|\
3 4 5
We can see that dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5)
equals 1 + 1 + 2 + 2 + 2 = 8. Hence, answer[0] = 8, and so on.
Note: 1 <= N <= 10000
思路
题意:给出一棵树,求出树上每个节点到其他节点的距离总和。
题解:每个节点保存两个值,一个是其子树的节点个数(包括自身节点也要计数)nodesum[ ],一个是其子树各点到它的距离 dp[ ],那么我们假设根节点为 u ,其仅有一个儿子 v , u 到 v 的距离为 1 ,而 v 有若干儿子节点,那么 dp[v] 表示 v 的子树各点到 v 的距离和,那么各个节点到达 u 的距离便可以这样计算: dp[u] = dp[v] + nodesum[ v ] *1; (式子的理解,v 的一个儿子节点为 f,那么 f 到达 u 的距离为 (sum[ f ->v] + sum [v- > u])*1 ,dp[v] 包含了 sum[f->v]*1,所以也就是式子的分配式推广到各个子节点计算出来的和)。我们已经知道了各个节点到达根节点的距离和,那么从根节点开始递推下来可以得到各个点的距离和。另开一个数组表示每个节点的到其他节点的距离和,那么对于根节点u来说, dissum[u] = dp[u]。以 u 的儿子 v 为例, v 的子节点到 v 不必经过 v->u 这条路径,因此 dissum[u] 多了 nodesum[v] * 1,但是对于不是 v 的子节点的节点,只到达了 u ,因此要到达 v 必须多走 u->v 这条路径,因此 dissum[u] 少了 ( N - nodesum[v] ) * 1) ,所以 dissum[v] = dissum[u] - nodesum[v] * 1 + (N - nodesum[v] ) * 1,按照这个方法递推下去就可以得到各个点的距离和。
1 class Solution {
2 private int tot = 0;
3 private Edge[] edge;
4 private int[] head;
5 private int[] dp;
6 private int[] nodesum;
7 private int[] dissum;
8 public int[] sumOfDistancesInTree(int N, int[][] edges) {
9 edge = new Edge[2 * N + 5];
10 head = new int[N + 5];
11 dp = new int[N + 5];
12 nodesum = new int[N + 5];
13 dissum = new int[N];
14 Arrays.fill(head,-1);
15 for (int i = 0;i < edges.length;i++){
16 int u = edges[i][0];
17 int v = edges[i][1];
18 addedge(u,v);
19 addedge(v,u);
20 }
21 dfs1(0,0);
22 dissum[0] = dp[0];
23 dfs2(0,0,N);
24 return dissum;
25 }
26
27 public void addedge(int u,int v){
28 edge[tot] = new Edge();
29 edge[tot].u = u;
30 edge[tot].v = v;
31 edge[tot].next = head[u];
32 head[u] = tot++;
33 }
34
35 public void dfs1(int u,int fa){
36 dp[u] = 0;
37 nodesum[u] = 1;
38 for (int i = head[u];i != -1;i = edge[i].next){
39 int v = edge[i].v;
40 if (v == fa) continue;
41 dfs1(v,u);
42 dp[u] += dp[v] + nodesum[v];
43 nodesum[u] += nodesum[v];
44 }
45 }
46
47 public void dfs2(int u,int fa,int sum){
48 for (int i = head[u];i != -1;i = edge[i].next){
49 int v = edge[i].v;
50 if (v == fa) continue;
51 dissum[v] = dissum[u] - nodesum[v] + sum - nodesum[v];
52 dfs2(v,u,sum);
53 }
54 }
55 class Edge{
56 int u,v,next;
57 }
58 }
┆ 凉 ┆ 暖 ┆ 降 ┆ 等 ┆ 幸 ┆ 我 ┆ 我 ┆ 里 ┆ 将 ┆ ┆ 可 ┆ 有 ┆ 谦 ┆ 戮 ┆ 那 ┆ ┆ 大 ┆ ┆ 始 ┆ 然 ┆
┆ 薄 ┆ 一 ┆ 临 ┆ 你 ┆ 的 ┆ 还 ┆ 没 ┆ ┆ 来 ┆ ┆ 是 ┆ 来 ┆ 逊 ┆ 没 ┆ 些 ┆ ┆ 雁 ┆ ┆ 终 ┆ 而 ┆
┆ ┆ 暖 ┆ ┆ 如 ┆ 地 ┆ 站 ┆ 有 ┆ ┆ 也 ┆ ┆ 我 ┆ ┆ 的 ┆ 有 ┆ 精 ┆ ┆ 也 ┆ ┆ 没 ┆ 你 ┆
┆ ┆ 这 ┆ ┆ 试 ┆ 方 ┆ 在 ┆ 逃 ┆ ┆ 会 ┆ ┆ 在 ┆ ┆ 清 ┆ 来 ┆ 准 ┆ ┆ 没 ┆ ┆ 有 ┆ 没 ┆
┆ ┆ 生 ┆ ┆ 探 ┆ ┆ 最 ┆ 避 ┆ ┆ 在 ┆ ┆ 这 ┆ ┆ 晨 ┆ ┆ 的 ┆ ┆ 有 ┆ ┆ 来 ┆ 有 ┆
┆ ┆ 之 ┆ ┆ 般 ┆ ┆ 不 ┆ ┆ ┆ 这 ┆ ┆ 里 ┆ ┆ 没 ┆ ┆ 杀 ┆ ┆ 来 ┆ ┆ ┆ 来 ┆