数据结构作业——expectation(树形dp+dfs)
expectation
Description
给出一棵带权值的树,我们假设从某个节点出发,到目标节点的时间为两个节点之间的最短路。由于出发节点不好选取,所以选在每个节点都有一定的概率,现在我们要求从出发点到目标节点的期望时间(即每个节点到目标点的时间*概率)。 为了避免精度错误, 直接给出了每个节点所占的权值, 那么每个节点的概率就是节点权值/总权值和( 注意查看实际输出要求)。
Input
输入第一行为一个正整数 n 表示树的节点数目, 节点编号从 1 到 n。
接下来一行 n 个整数 vi, 表示第 i 个节点所占的权值(<=20)。 紧接着 n-1 行,每行三个数 x, y, d (d<=20) ,表示经过 x 和 y 之间的树边 所需花费的时间为 d。
接下来一行有一个整数 q,表示询问数目。 紧接着 q 行, 每行一个整数,表示目的节点。
30%的数据: n<=20,q=1
50%的数据: n<=1000, q<=10
80%的数据: n<=10000,q<=1000 100%的数据: n<=100000, q<=n
Output
Sample Input
5
1 1 1 1 1
1 2 2
1 3 1
1 4 3
3 5 2
1 3
Sample Output
10
思路
每个节点保存两个值,一个是其子树的点权和(包括自身节点) nodesum[ ],一个是其子树各点到它的期望时间和 dp[ ]。那么我们假设根节点为 u ,其仅有一个儿子 v , u 到 v 的距离为 w ,而 v 有若干儿子节点,那么 dp[v] 表示 v 的子树各点到 v 的期望时间和,那么各个节点到达 u 的期望时间和便可以这样计算: dp[u] = dp[v] + nodesum[ v ] *w; (式子的理解,v 的一个儿子节点为 f,那么 f 到达 u 的期望时间为 (sum[ f ->v] + sum [v- > u])*val[f] (其中 val[v] 为 f 的权值),dp[v] 包含了 sum[f->v]*val[f],所以也就是式子的分配式推广到各个子节点计算出来的和),求出了 nodesum[ ] 数组和 dp[ ] 数组后,对于 q 个询问可以快速的求出。我们已经知道了各个节点到达根节点的期望时间和,那么从根节点开始递推下来可以得到各个点的期望时间和。另开一个数组表示每个节点的期望时间和,那么 dissum[u] = dp[u]。以 u 的儿子 v 为例, v 的子节点到 v 不必经过 v->u 这条路径,因此 dissum[u] 多了 nodesum[v] * w,但是对于不是 v 的子节点的节点,只到达了 u ,因此要到达 v 必须多走 u->v 这条路径,因此 dissum[u] 少了 ( totaval - nodesum[v] ) * w) ,所以 dissum[v] = dissum[u] - nodesum[v] * w + (total - nodesum[v] ) * w,按照这个方法递推下去就可以得到各个点的期望时间和。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | #include<iostream> #include<cstdio> #include<cstring> using namespace std; const int maxn = 100005; struct Edge{ int u,v,w,next; }edge[maxn<<1]; int tot = 0,totval= 0,head[maxn],val[maxn],nodesum[maxn],dissum[maxn],dp[maxn]; void addedge( int u, int v, int w) { edge[tot].u = u,edge[tot].v = v,edge[tot].w = w,edge[tot].next = head[u]; head[u] = tot++; } void dfs1( int u, int fa) { int i; dp[u] = 0,nodesum[u] = val[u]; for (i = head[u];~i;i = edge[i].next) { int v = edge[i].v,w = edge[i].w; if (v == fa) continue ; dfs1(v,u); dp[u] += dp[v] + nodesum[v]*w; nodesum[u] += nodesum[v]; } } void dfs2( int u, int fa) { int i; for (i = head[u];~i;i = edge[i].next) { int v = edge[i].v,w = edge[i].w; if (v == fa) continue ; dissum[v] = dissum[u] - nodesum[v]*w + (totval - nodesum[v])*w; dfs2(v,u); } } int main() { //freopen("input.txt","r",stdin); int N,i,u,v,w,m,tmp; memset (head,-1, sizeof (head)); scanf ( "%d" ,&N); for (i = 1;i <= N;i++) scanf ( "%d" ,&val[i]),totval += val[i]; for (i = 1;i < N;i++) { scanf ( "%d%d%d" ,&u,&v,&w); addedge(u,v,w); addedge(v,u,w); } dfs1(1,1); dissum[1] = dp[1]; dfs2(1,1); scanf ( "%d" ,&m); for (i = 1;i <= m;i++) { scanf ( "%d" ,&tmp); printf ( "%d\n" ,dissum[tmp]); } return 0; } |
┆ 凉 ┆ 暖 ┆ 降 ┆ 等 ┆ 幸 ┆ 我 ┆ 我 ┆ 里 ┆ 将 ┆ ┆ 可 ┆ 有 ┆ 谦 ┆ 戮 ┆ 那 ┆ ┆ 大 ┆ ┆ 始 ┆ 然 ┆
┆ 薄 ┆ 一 ┆ 临 ┆ 你 ┆ 的 ┆ 还 ┆ 没 ┆ ┆ 来 ┆ ┆ 是 ┆ 来 ┆ 逊 ┆ 没 ┆ 些 ┆ ┆ 雁 ┆ ┆ 终 ┆ 而 ┆
┆ ┆ 暖 ┆ ┆ 如 ┆ 地 ┆ 站 ┆ 有 ┆ ┆ 也 ┆ ┆ 我 ┆ ┆ 的 ┆ 有 ┆ 精 ┆ ┆ 也 ┆ ┆ 没 ┆ 你 ┆
┆ ┆ 这 ┆ ┆ 试 ┆ 方 ┆ 在 ┆ 逃 ┆ ┆ 会 ┆ ┆ 在 ┆ ┆ 清 ┆ 来 ┆ 准 ┆ ┆ 没 ┆ ┆ 有 ┆ 没 ┆
┆ ┆ 生 ┆ ┆ 探 ┆ ┆ 最 ┆ 避 ┆ ┆ 在 ┆ ┆ 这 ┆ ┆ 晨 ┆ ┆ 的 ┆ ┆ 有 ┆ ┆ 来 ┆ 有 ┆
┆ ┆ 之 ┆ ┆ 般 ┆ ┆ 不 ┆ ┆ ┆ 这 ┆ ┆ 里 ┆ ┆ 没 ┆ ┆ 杀 ┆ ┆ 来 ┆ ┆ ┆ 来 ┆
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)