Codeforces Round #254 (Div. 2)C DZY Loves Physics(图论结论题)
题目链接: 传送门
Description
DZY loves Physics, and he enjoys calculating density.
Almost everything has density, even a graph. We define the density of a non-directed graph (nodes and edges of the graph have some values) as follows:
where v is the sum of the values of the nodes, e is the sum of the values of the edges.
Once DZY got a graph G, now he wants to find a connected induced subgraph G' of the graph, such that the density of G' is as large as possible.
An induced subgraph G'(V', E') of a graph G(V, E) is a graph that satisfies:
- edge if and only if and edge
- the value of an edge in G' is the same as the value of the corresponding edge in G, so as the value of a node.
Help DZY to find the induced subgraph with maximum density. Note that the induced subgraph you choose must be connected.
Input
The first line contains two space-separated integers n (1 ≤ n ≤ 500), . Integer n represents the number of nodes of the graph G, m represents the number of edges.
The second line contains n space-separated integers xi (1 ≤ xi ≤ 10^6), where xi represents the value of the i-th node. Consider the graph nodes are numbered from 1 to n.
Each of the next m lines contains three space-separated integers ai, bi, ci (1 ≤ ai < bi ≤ n; 1 ≤ ci ≤ 10^3), denoting an edge between node ai and bi with value ci. The graph won't contain multiple edges.
Output
Output a real number denoting the answer, with an absolute or relative error of at most 10^ - 9.
Sample Input
1 0
1
2 1
1 2
1 2 1
5 6
13 56 73 98 17
1 2 56
1 3 29
1 4 42
2 3 95
2 4 88
3 4 63
Sample Output
0.000000000000000
3.000000000000000
2.965517241379311
思路
题目大意:给出一张图,图中的每个节点,每条边都有一个权值,现在有从中挑出一张子图,要求子图联通,并且被选中的任意两点,如果存在边,则一定要被选中。问说点的权值和/边的权值和最大是多少。
可以证明,密度最大的子图一定只有两个点,再往里面加任何边,密度都会被拉低。
假设一个图现在有两个点点权为v1,v2,他们之间相连的边的边权为m1,该图的密度为(v1+v2)/m1。如果增加一个点v3要让该图的密度增加,若v3与v2相连的边的边权为m2。那么只有与v3/m2>(v1+v2)/m1,该图的密度才会增加。但是此时,v2与v3两个点构成的子图的密度为(v2+v3)/m2>(v1+v2+v3)/(m1+m2)。所以密度最大的子图一定只有两个点。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef __int64 LL;
int main()
{
int N,M;
while (~scanf("%d%d",&N,&M))
{
double ans[505] = {0};
int u,v,val;
double res = 0;
for (int i = 1;i <= N;i++)
{
scanf("%lf",&ans[i]);
}
while (M--)
{
scanf("%d%d%d",&u,&v,&val);
res = max (res,(ans[u]+ans[v])/val);
}
printf("%.15lf\n",res);
}
return 0;
}
┆ 凉 ┆ 暖 ┆ 降 ┆ 等 ┆ 幸 ┆ 我 ┆ 我 ┆ 里 ┆ 将 ┆ ┆ 可 ┆ 有 ┆ 谦 ┆ 戮 ┆ 那 ┆ ┆ 大 ┆ ┆ 始 ┆ 然 ┆
┆ 薄 ┆ 一 ┆ 临 ┆ 你 ┆ 的 ┆ 还 ┆ 没 ┆ ┆ 来 ┆ ┆ 是 ┆ 来 ┆ 逊 ┆ 没 ┆ 些 ┆ ┆ 雁 ┆ ┆ 终 ┆ 而 ┆
┆ ┆ 暖 ┆ ┆ 如 ┆ 地 ┆ 站 ┆ 有 ┆ ┆ 也 ┆ ┆ 我 ┆ ┆ 的 ┆ 有 ┆ 精 ┆ ┆ 也 ┆ ┆ 没 ┆ 你 ┆
┆ ┆ 这 ┆ ┆ 试 ┆ 方 ┆ 在 ┆ 逃 ┆ ┆ 会 ┆ ┆ 在 ┆ ┆ 清 ┆ 来 ┆ 准 ┆ ┆ 没 ┆ ┆ 有 ┆ 没 ┆
┆ ┆ 生 ┆ ┆ 探 ┆ ┆ 最 ┆ 避 ┆ ┆ 在 ┆ ┆ 这 ┆ ┆ 晨 ┆ ┆ 的 ┆ ┆ 有 ┆ ┆ 来 ┆ 有 ┆
┆ ┆ 之 ┆ ┆ 般 ┆ ┆ 不 ┆ ┆ ┆ 这 ┆ ┆ 里 ┆ ┆ 没 ┆ ┆ 杀 ┆ ┆ 来 ┆ ┆ ┆ 来 ┆