Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js

【拓展】物理奥赛

开始学物理了!!!

先做两道题:

  • 质量分别为m1和m2的两个小物块用轻绳连结,绳跨过位于倾角α = 30°的光滑斜面顶端的轻滑轮,滑轮与转轴之间的磨擦不计,斜面固定在水平桌面上,如图所示。第一次,m1悬空,m2放在斜面上,用t表示m2自斜面底端由静止开始运动至斜面顶端所需的时间。第二次,将m1和m2位置互换,使m2悬空,m1放在斜面上,发现m1自斜面底端由静止开始运动至斜面顶端所需的时间为t/3。求ml与m2之比。 

一开始错写成

m1g12m2gm2t2=m2g12m1g3m1t6

后来发现其实根本不是那样的,绳的拉力并不等于重力
【正解】
第一次物块运动的加速度a1分析如下:
对m2沿斜面方向受力分析,有

T_1 − m+2gsinα = m_2a_1

由于有绳约束,m1的加速度也为a1,则对其竖直方向受力分析,有

m_1g − T_1=m_1a_1

联立两式消去拉力T:可得

a_1 = \frac {m_1g − m_2gsinα }{ m_1 + m_2 } = \frac { 2m_1 − m_2} { 2(m_1 + m_2)g }

同理,第二次物块运动的加速度a_2

对m1沿斜面方向受力分析,有

T_2 − m_1gsinα = m_1a_2

由于有绳约束,m2的加速度也为a2,则对其竖直方向受力分析,有

m_2g−T_2 = m_2a_2

联立两式消去拉力T:可得

a_2 = \frac{ m_2g − m_1gsinα } { m_1+m_2} = \frac { 2m_2−m_1 } { 2(m_1+m_2)g }

以l表示斜面的长度,则依题述有运动学关系

l = \frac {1} {2}a_1t^2= \frac {1}{2} a_2( \frac {t}{3} )^2

即得

9a_1=a_2

,联立以上可解得

\frac {m_1}{m_2} = \frac {11}{19}

  • 一个密度均匀的圆柱,质量为m,半径为R,放在两个等高的台阶上,台阶一个固定不动,一个可无摩擦地滑动,如图所示.

    当两支点的距离为2√R时,固定台阶对圆柱的支持力N,求此时可动台阶A的滑动速度.设所有摩擦均可忽略不计.
    滑动的台阶和圆柱之间有速度关联.在圆柱静止系中,可动台阶上与圆柱的接触点只有切向速度.圆柱和静止的台阶有速度,加速度关联.即圆柱质心只有垂直于圆心到接触点的连线的速度分量,向心加速度为

\frac {v_0^2} {R} $$. 圆柱法向受力提供向心加速度,可以得到圆柱质心的速度,再用关联可以得到可动台阶的速度. 由分析,圆柱的质心O相对于固定点C作圆周运动,以v0表示其速度大小,则有重力分量与支持力之差提供向心力 $$ mv_0^2R = mgcos45°−N,

所以解得

v_0 = \sqrt{ \frac{ (\sqrt{2}mg - 2N)R }{ 2m } }


由于BC=2√R,圆柱绕固定点C圆周运动,故轮缘B点的速度有:

v_B = ω⋅\sqrt{2}R = \frac {v_0}{R}⋅\sqrt{2} R=\sqrt{2}v_0,v_B的方向垂直于BC向下.

vB即为轮缘B点对地的速度\vec{v}_{ B→G},\vec{v}_{ A→B}必沿B点处圆弧切线方向,\vec{v}_{ A→G}必沿水平方向,且此三者应满足\vec{v}_{ A→G} = \vec{v}_{ A→B} + \vec{v}_{ B→C},

即为图所示的关系,由图几何关系可见\vec{v}_{ A→G} = \vec{v}_{ B→G},即

v = v_B = \sqrt{2} v_0 = \sqrt{ \frac{ (\sqrt{2}mg - 2N)R } { m } }

感觉物理白学了

From: 质心教育.

posted @   Zforw  阅读(138)  评论(0编辑  收藏  举报
编辑推荐:
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
阅读排行:
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· 语音处理 开源项目 EchoSharp
· 《HelloGitHub》第 106 期
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 使用 Dify + LLM 构建精确任务处理应用
点击右上角即可分享
微信分享提示