Fibonacci数性质

Fibonacci数性质

0.\(F_{n-1}+F_{n-2}=F_{n} ,特殊的 F_{0}=1,F_{1}=1\)

上述式子为定义式

1.\(F_{0}+F_{1}+...+F_{n}=F_{n+2}-1\)

证明:

\(F_0+F_1=F_2\)

\(F_1+F_2=F_3\)

\(F_2+F_3=F_4\)

\(\vdots\)

\(F_{n}+F_{n+1}=F_{n+2}\)

\(F_{0}+2F_{1}+2F_{2}+...+2F_{n}+F_{n+1}=F_1+F_2+...+F_{n+2}\)

\(F_0+F_1+F_2+...+F_{n}+F_{n+1}=F_{n+2}-F_{1}=F_{n+2}-1\)

2.\(F_{1}+F_{3}+...+F_{2n-1}=F_{2n}\)

证明

\(F_{1}=F_{0}+1\)

\(F_{3}=F_{2}+F_{1}\)

\(\vdots\)

\(F_{2n-1}=F_{2n-2}+F_{2n-3}\)

\(F_{1}+F_{3}+...+F_{2n-1}=1+F_{0}+F_{1}+F_{2}+...+F_{2n-3}+F_{2n-2}=1+F_{2n}-1=F_{2n}\)

3.\(F_0+F_2+...+F_{2n}=F_{2n+1}-1\)

证明:

\(F_0+F_1+...+F_n=F_{n+2}-1\)\(F_1+F_3+...+F_{2n-1}=F_{2n}\)

$F_0+F_2...+F_{2n}=F_{2n+2}-F_{2n}-1=F_{2n+1}-1 $

4.\(F_0^2+F_1^2+F_2^2+...F_{n-1}^2+F_n^2=F_n F_{n+1}\)

证明

\(F_0^2=F_0*F_1\) ,假设有 \(F_{0}^2+F_1^2+F_2^2+...+F_{n-1}^2=F_{n-1} F_{n}\)

那么 \(F_0^2+F_1^2+...+F^2_{n-1}+F^2_{n}=F_{n-1}F_{n}+F_{n}^2=F_{n}F_{n+1}\)

5.\(F_{n+2}+F_{n-2}=3\times F_{n}\)

证明

\(F_{n+2}=F_{n+1}+F_{n}=(F_{n}+F_{n-1})+F_{n}=(F_{n}+(F_{n}-F_{n-2}))+F_{n}=3\times F_{n}-F_{n-2}\)

6.\(gcd(F_{n+1},F_{n})=1\)

证明:
根据辗转相减法则
$ gcd(F_{n+1},F_{n}) =gcd(F_{n+1}-F_{n},F_{n}) =gcd(F_{n},F_{n-1}) =gcd(F_{2},F_{1}) =1$

7.\(F_{m+n}=F_{m-1}F_{n}+F_{m}F_{n+1}\)

\(F_n\)看做斐波那契的第1项,那么到第\(F_{n+m}\)项时,系数为\(F_{m-1}\)

\(F_{n+1}\)看做斐波那契的第2项,那么到第\(F_{n+m}\)项时,系数为\(F_{m}\)

8.\(gcd(F_{n+m},F_{n})=gcd(F_{n},F_{m})\)

证明:
\(gcd(F_{n+m},F_{n})=gcd(F_{n+1}F_{m}+F_{n}F_{m-1},F_{n})=gcd(F_{n+1}F_{m},F_{n})=gcd(F_{m},F_{n})\)

9.\(gcd(F_{n},F_{m})=F_{gcd(n,m)}\)

由8式得,Fibonacci数满足下标的辗转相减

\(gcd(F_n,F_m)=gcd(F_{gcd(n,m)},F_{gcd(n,m)})=F_{gcd(n,m)}\)

posted @ 2018-10-10 22:25  Zerokei  阅读(346)  评论(0编辑  收藏  举报