Pytorch:使用GPU训练
1.模型转为cuda
gpus = [0] #使用哪几个GPU进行训练,这里选择0号GPU
cuda_gpu = torch.cuda.is_available() #判断GPU是否存在可用
net = Net(12288, 25, 16, 6)
if(cuda_gpu):
net = torch.nn.DataParallel(net, device_ids=gpus).cuda() #将模型转为cuda类型
2.数据转为cuda
(minibatchX, minibatchY) = minibatch
minibatchX = minibatchX.astype(np.float32).T
minibatchY = minibatchY.astype(np.float32).T
if(cuda_gpu):
b_x = Variable(torch.from_numpy(minibatchX).cuda()) #将数据转为cuda类型
b_y = Variable(torch.from_numpy(minibatchY).cuda())
else:
b_x = Variable(torch.from_numpy(minibatchX))
b_y = Variable(torch.from_numpy(minibatchY))
3.输出数据去cuda,转为numpy
correct_prediction = sum(torch.max(output, 1)[1].data.squeeze() == torch.max(b_y, 1)[1].data.squeeze())
if(cuda_gpu):
correct_prediction = correct_prediction.cpu().numpy() #.cpu将cuda转为tensor类型,.numpy将tensor转为numpy类型
else:
correct_prediction = correct_prediction.numpy()
linux输入nvidia-smi,可以看到调用GPU成功!
posted on 2019-07-18 10:32 Frank_Allen 阅读(1607) 评论(0) 编辑 收藏 举报