TensorFlow自动求梯度
例1
import tensorflow as tf
a=tf.Variable(tf.constant(1.0),name='a')
b=tf.Variable(tf.constant(1.0),name='b')
cost=a+b
train_op=tf.train.GradientDescentOptimizer(learning_rate=2).minimize(cost)
print(tf.trainable_variables())
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
writer=tf.summary.FileWriter('./tensorboard_dir',sess.graph)
print('initial value: ',sess.run([a,b,cost]))
print('train_op 1 step: ',sess.run([train_op,a,b,cost]))
print('train_op 2 step: ',sess.run([train_op,a,b,cost]))
writer.close()
注意: tensorboard --logdir=tensorboard_dir
,logdir的值不要用单引号包起来
posted on 2018-12-16 09:45 Frank_Allen 阅读(414) 评论(0) 编辑 收藏 举报