Educational Codeforces Round 155 (Rated for Div

B. Chips on the Board

image-20230930212557504

题解:贪心

  • 显然我们可以把题意转化为:对于任意一个\((i,j)\),我们可以花费\(a_{i,j}\)的代价占据第\(i\)行和第\(j\)列,求占据所有格子的最小代价

  • 考虑两种情况:

  1. 在每一行选一个格子
  2. 在每一列选一个格子

贪心选即可

int n, a[N], b[N];

void solve()
{
    cin >> n;
    int posa = -1, posb = -1;
    for (int i = 1; i <= n; ++i)
    {
        cin >> a[i];
        if (posa == -1 || a[i] < a[posa])
            posa = i;
    }
    for (int i = 1; i <= n; ++i)
    {
        cin >> b[i];
        if (posb == -1 || b[i] < b[posb])
            posb = i;
    }
    int ans = INF, sum = 0;
    for (int i = 1; i <= n; ++i)
        sum += a[i];
    sum += n * b[posb];
    ans = min(ans, sum);
    sum = 0;
    for (int i = 1; i <= n; ++i)
        sum += b[i];
    sum += n * a[posa];
    ans = min(ans, sum);
    cout << ans << endl;
}

C. Make it Alternating

image-20230930213426552

题解:组合数学

  • 显然可以将字符串\(s\)分成由连续\(1\)\(0\)组成的几段区间,那么最小操作次数显然是区间的数量

  • 我们考虑方案数:

对于每段区间,我们必须留下一个数,假设某段区间的长度为\(len\),那么对答案的贡献为:\(ans:=ans\times len\)

那么其他没有被留下的数就要全部被删除,那么删除的顺序任意,假设被删除的数的数量为\(cnt\),那么对答案的贡献为\(ans:=ans \times cnt!\)

int n, fac[N];

void init()
{
    fac[0] = 1ll;
    for (int i = 1; i < N; ++i)
        fac[i] = (fac[i - 1] * i) % mod;
}

void solve()
{
    string s;
    cin >> s;
    n = s.length();
    s = " " + s;
    int ans1 = 0, ans2 = 1;
    for (int i = 1; i < n; ++i)
        ans1 += (s[i] == s[i + 1]);
    int l, r, f = 0;
    for (int i = 1; i < n; ++i)
    {
        if (!f && s[i] == s[i + 1])
        {
            f = 1;
            l = i;
        }
        else if (f && s[i] != s[i + 1])
        {
            f = 0;
            r = i;
            ans2 *= (r - l + 1);
            ans2 %= mod;
        }
        else if (f && i + 1 == n)
        {
            f = 0;
            r = n;
            ans2 *= (r - l + 1);
            ans2 %= mod;
        }
    }
    if (f)
        ans2 = ans2 * (n - l + 1) % mod;
    ans2 = ans2 * fac[ans1] % mod;
    cout << ans1 << " " << ans2 << endl;
}

D. Sum of XOR Functions

image-20230930214054285

题解:按位计算贡献

  • 我们发现,对于二进制中某一位\(i\)来说,我们考虑其对答案的贡献 :

\[2^i \sum_{r = 1}^n \sum_{l=1}^r g(l,r)(r - l + 1) \]

\(g(l,r)\)为第\(i\)位二进制在\([l,r]\)\(1\)的个数,如果\(1\)为奇数,则\(g(l,r)=1\),否则\(g(l,r) = 0\)

  • 那么题目就转化为:对于一个\(01\)序列,固定右端点\(r\),求有多少个左端点\(l\)使得\(g(l,r)=1\)

  • 我们定义\(pre[i]\)\([1,i]\)的前缀异或和,那么\(pre[r] \oplus pre[l-1] = 1\)就代表\(g(l,r)=1\)

  • 那么我们完全可以对前缀维护一个\(cnt\)\(sum\)

  • 所以复杂度为 \(O(30n)\)

int n, a[N];

ll add(ll a, ll b) { return (a + b) % mod; }
ll sub(ll a, ll b) { return ((a - b) % mod + mod) % mod; }

void solve()
{
    cin >> n;
    for (int i = 1; i <= n; ++i)
        cin >> a[i];
    int ans = 0ll;
    // 考虑每一位二进制对答案产生的贡献
    for (int i = 0; i <= 30; ++i)
    {
        vector<int> vec(n + 10), pre(n + 10), cnt(2), sum(2);
        int res = 0ll;
        cnt[0]++; // pre[0] = 0
        for (int j = 1; j <= n; ++j)
        {
            vec[j] = (a[j] >> i & 1);
            pre[j] = (pre[j - 1] ^ vec[j]);
            cnt[pre[j]]++;
            sum[pre[j]] += j;
            res = add(res, sub((cnt[pre[j] ^ 1] * (j) % mod), sum[pre[j] ^ 1]));
        }
        ans = add(ans, (1ll << i) * res % mod);
    }
    cout << ans << endl;
}
posted @ 2023-09-30 22:16  Zeoy_kkk  阅读(31)  评论(0编辑  收藏  举报