Stas and the Queue at the Buffet
Stas and the Queue at the Buffet
题解:贪心+思维
我们看到公式\(ai⋅(j−1)+bi⋅(n−j)\),直接进行化简得到
\[(a[i]-b[i])*j+n*b[i]-a[i]
\]
我们就知道\(n*b[i]-a[i]\)是个定值,所以我们把差值最大的放在前面,把最小的放在后面,贪心放即可
#include <bits/stdc++.h>
#define Zeoy std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0)
#define all(x) (x).begin(), (x).end()
#define endl '\n'
using namespace std;
typedef pair<int, int> pii;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + 7;
const double eps = 1e-9;
const int N = 1e5 + 10;
struct node
{
ll a, b, d;
bool operator<(const node &t) const
{
return d > t.d;
}
} a[N];
int main(void)
{
Zeoy;
int t = 1;
// cin >> t;
while (t--)
{
int n;
cin >> n;
for (int i = 1; i <= n; ++i)
{
cin >> a[i].a >> a[i].b;
a[i].d = a[i].a - a[i].b;
}
sort(a + 1, a + 1 + n);
ll sum = 0;
for (int i = 1; i <= n; ++i)
{
sum += a[i].d * i + n * a[i].b - a[i].a;
}
cout << sum << endl;
}
return 0;
}