USACO 4.1.1 麦香牛块 Beef McNuggets
题目大意
给你\(n\)个数\(a_1, a_2 ... a_n\), 要你求最大的正整数\(m\)使得方程\(a_1 x_1 + a_2 x_2 + ... + a_n x_n = m\)无非负整数解. 题目数据满足\(a_x\)为正整数且不大于\(256\), \(n \le 10\).
Solution
先看一个定理: 对于正整数\(p\), \(q\)满足\(gcd(p, q) = 1\), 我们有\(px + qy = n\)无非负整数解的最大正整数\(n\)为\(pq - p - q\). 证明如下:
我们首先利用反证法, 证明\(px + qy \ne pq - p - q\): 我们假设存在正整数\(x\)和\(y\)使得\(px + qy = pq - p - q\), 则有
接着我们令\(y + 1 = pj\), \(x + 1 = qk\). 则有
注意到\(x, y \ge 0\), 我们有\(y + 1 \ge 1\)且\(x + 1 \ge 1\), 因而\(j \ge 1\)且\(k \ge 1\). 因而\(j + k \ge 2\), 因而假设不成立.
得证.
再证明当\(n \ge pq - p - q + 1\)时原方程总有非负整数解:
我们令\(n = pq - p - q + k\), 则根据扩展欧几里得定理, 方程\(pa + qb = k\)有整数解(其中\(a\)和\(b\)中必有一个为正, 一个为负). 我们假设\(a < 0 < b\), 调整\(a\)和\(b\)的值使得\(|a| < q\). 令此时的\(a\)和\(b\)分别为\(A\)和\(B\).
回到原方程
根据前面的结论, 我们又有
因此我们令
则有
不妨设\(i = 0\)且\(j = 1\), 则
因而
由于\(B > 0\), 因而\(B - 1 \ge 0\);
根据之前定义, 我们又有\(|A| < q\), 因而\(A + q - 1 \ge 0\)
因而原方程必有非负整数解.
好了, 现在考虑这道题怎么做233
注意到\(a\)值较小, 我们直接从0开始到\(256^2\)背包暴力即可.
我们注意到\(a\)之间并不一定互质, 但这并不影响我们枚举的范围.
#include <cstdio>
#include <cctype>
const int N = 10, LIM = 256;
int a[N], f[LIM * LIM << 2];
int main()
{
int n; scanf("%d", &n);
for(int i = 0; i < n; ++ i) scanf("%d", a + i);
f[0] = 1;
for(int i = 1; i < LIM * LIM << 2; ++ i) for(int j = 0; j < n; ++ j) if(i - a[j] >= 0 && f[i - a[j]]) f[i] = 1;
int ans = 0;
for(int i = 1; i < LIM * LIM << 2; ++ i) if(! f[i]) ans = i;
printf("%d\n", ans > LIM * LIM ? 0 : ans);
}