2016北京集训测试赛(十四)Problem B: 股神小D
Solution
正解是一个\(\log\)的link-cut tree. 将一条边拆成两个事件, 按照事件排序, link-cut tree维护联通块大小即可.
link-cut tree维护子树大小非常不熟练. 正确的做法是每个点开两个变量size
和add
, 分别表示在splay中以这个点为根的所有点所在的子树的点的数量, 以及以当前点为根的子树由虚边贡献的点的数量.
#include <cstdio>
#include <cctype>
#include <algorithm>
#define sort std::sort
#define swap std::swap
namespace Zeonfai
{
inline int getInt()
{
int a = 0, sgn = 1; char c;
while(! isdigit(c = getchar())) if(c == '-') sgn *= -1;
while(isdigit(c)) a = a * 10 + c - '0', c = getchar();
return a * sgn;
}
}
const int N = (int)2e5;
struct edge
{
int u, v, pos, opt;
inline edge() {}
inline edge(int _u, int _v, int _pos, int _opt) {u = _u; v = _v; pos = _pos; opt = _opt;}
inline int friend operator <(edge a, edge b)
{
return a.pos == b.pos ? a.opt < b.opt : a.pos < b.pos;
}
}edg[N << 1];
struct linkCutTree
{
struct node
{
node *pre, *suc[2];
int isRoot, rev, sz, ad; // ad表示虚边连过来的大小, sz表示整颗辅助树的大小
inline node() {pre = NULL; for(int i = 0; i < 2; ++ i) suc[i] = NULL; isRoot = sz = 1; rev = ad = 0;}
inline int getRelation() {return isRoot ? -1 : this == pre->suc[1];}
inline void update() {sz = ad + 1; for(int i = 0; i < 2; ++ i) if(suc[i] != NULL) sz += suc[i]->sz;}
inline void reverse()
{
if(! isRoot) pre->reverse();
if(rev)
{
swap(suc[0], suc[1]); rev = 0;
for(int i = 0; i < 2; ++ i) if(suc[i] != NULL) suc[i]->rev ^= 1;
}
}
}nd[N + 1];
inline void rotate(node *u)
{
node *pre = u->pre, *prepre = u->pre->pre; int k = u->getRelation();
if(u->suc[k ^ 1] != NULL) u->suc[k ^ 1]->pre = pre; pre->suc[k] = u->suc[k ^ 1];
u->pre = prepre; if(! pre->isRoot) prepre->suc[pre->getRelation()] = u;
u->suc[k ^ 1] = pre; pre->pre = u;
if(pre->isRoot) u->isRoot = 1, pre->isRoot = 0;
pre->update(); u->update();
}
inline void splay(node *u)
{
u->reverse();
while(! u->isRoot)
{
if(! u->pre->isRoot) rotate(u->getRelation() == u->pre->getRelation() ? u->pre : u);
rotate(u);
}
}
inline void access(node *u)
{
splay(u);
if(u->suc[1] != NULL) u->suc[1]->isRoot = 1, u->ad += u->suc[1]->sz, u->suc[1] = NULL;
while(u->pre != NULL)
{
splay(u->pre);
if(u->pre->suc[1] != NULL) u->pre->suc[1]->isRoot = 1, u->pre->ad += u->pre->suc[1]->sz;
u->pre->suc[1] = u; u->pre->ad -= u->sz; u->isRoot = 0;
splay(u);
}
}
inline void makeRoot(node *u)
{
access(u); u->rev ^= 1;
}
inline long long link(int _u, int _v)
{
node *u = nd + _u, *v = nd + _v;
makeRoot(u); makeRoot(v);
long long res = (long long)u->sz * v->sz;
v->pre = u; u->sz += v->sz; u->ad += v->sz;
return res;
}
inline void cut(int _u, int _v)
{
node *u = nd + _u, *v = nd + _v;
makeRoot(u); access(v);
v->suc[0] = NULL; u->isRoot = 1; u->pre = NULL; v->sz -= u->sz;
}
}LCT;
int main()
{
#ifndef ONLINE_JUDGE
freopen("tree.in", "r", stdin);
freopen("tree.out", "w", stdout);
#endif
using namespace Zeonfai;
int n = getInt();
for(int i = 0, u, v, L, R; i < n - 1; ++ i) u = getInt(), v = getInt(), L = getInt(), R = getInt(), edg[i << 1] = edge(u, v, L, 1), edg[i << 1 | 1] = edge(u, v, R + 1, 0);
sort(edg, edg + (n - 1 << 1));
long long ans = 0;
for(int i = 0; i < n - 1 << 1; ++ i) if(! edg[i].opt) LCT.cut(edg[i].u, edg[i].v); else ans += LCT.link(edg[i].u, edg[i].v);
printf("%lld\n", ans);
}