poj 3532 Resistance
---恢复内容开始---
Time Limit: 1000MS | Memory Limit: 131072K | |
Total Submissions: 1289 | Accepted: 418 |
Description
H.L. is preparing a circuit for the next coming physical experiment. His circuit consists of N nodes, numbered 1 to N, which are connected by wires with certain resistance. H.L is curious about the equivalent resistance between Node 1 and Node N.
Input
The first line contains two positive integers N and M, the number of nodes and wires in the circuit.( N, M ≤ 100)
The next M lines, each describe a wire connection by three integers X, Y, R which indicates that between Node X and Node Y, there is a wire with resistance of R ohm.
Output
Sample Input
2 2 1 2 1 1 2 1
Sample Output
0.50
题意:有N个节点,M条电线,电线都会有电阻,求起始节点和终止节点之间的等效电阻
思路:由基尔霍夫电流定律,每个节点的流入电流与流出电流量是相等的,根据这条信息我们即可列出相关方程。
例如下图,以节点2为例可列方程,I1,I2,I3分别是在单位电势下流经节点(1,2),(2,3),(2,4)之间电线的电流,那么我们设x1,x2,x3,x4分别为节点1,2,3,4的电势,流入节点的电流等于流出节点的电流量,则可得到方程:
I1(x1-x2)+I2(x3-x2)+I3(x4-x2)=0;整理一下:I1x1+(-I1-I2-I3)x2+I2x3+I3x4=0;
那么除了初始节点和终止节点,其余的节点都有上述等式成立,则可得到n-2个方程,初始节点和终止节点的电势,我们可以人为的设置一个值,不如就初始节点电势为1,终止节点电势为0,再根据n-2个方程即可得到中间n-2个节点的电势值。
之后只要求出流经整幅图的电流量I_sum,那么等效电阻=(初始结点电势-终止节点电势)/ I_sum==1 / I_sum。
I_sum可以通过计算初始节点的电流流入量或者终止节点电流流出量得到。
AC代码:
#define _CRT_SECURE_NO_DEPRECATE #include <iostream> #include <vector> #include<algorithm> #include<cmath> #include<cstring> using namespace std; #define MAX_N 500 #define EPS 1e-8 typedef vector<double> vec; typedef vector<vec> mat; double resistor[MAX_N][MAX_N]; // 不考虑其他节点影响时,两个节点间的电阻 int N, M; vec gauss(const mat&A, const vec&b) { int n = A.size();//!!!! mat B(n, vec(n + 1)); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++)B[i][j] = A[i][j]; for (int i = 0; i < n; i++)B[i][n] = b[i]; for (int i = 0; i < n; i++) { int pivot = i; for (int j = i; j < n; j++) { if (abs(B[j][i]) > abs(B[pivot][i])) {//!!! pivot = j; } } swap(B[i], B[pivot]); if (abs(B[i][i]) < EPS)return vec();//无解 for (int j = i + 1; j <= n; j++) { B[i][j] /= B[i][i]; } for (int j = 0; j < n; j++) { if (i != j) { for (int k = i + 1; k <= n; k++) { B[j][k] -= B[j][i] * B[i][k]; } } } } vec x(n); for (int i = 0; i < n; i++) { x[i] = B[i][n]; } return x; } int main() { while (scanf("%d%d", &N, &M) != EOF) { memset(resistor, 0, sizeof(resistor)); for (int i = 0; i < M; i++) { int from, to; double R; scanf("%d%d%lf", &from, &to, &R); if (R == 0)continue; from--, to--; resistor[from][to] += 1 / R; resistor[to][from] += 1 / R; } for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { resistor[i][j] = 1.0 / resistor[i][j]; } } mat A(N, vec(N, 0)); vec b(N, 0); b[0] = 1.0; b[N - 1] = 0.0; A[0][0] = 1, A[N - 1][N - 1] = 1; for (int i = 1; i < N - 1; i++) { for (int j = 0; j < N; j++) { if (resistor[i][j] > 0) { double I = 1.0 / resistor[i][j]; A[i][i] -= I; A[i][j] += I; } } } vec voltage = gauss(A, b); double current = 0; for (int i = 0; i < N; i++) { if (resistor[0][i] > 0) { current += (voltage[0] - voltage[i]) / resistor[0][i]; } } printf("%.2f\n", 1.0 / current); } return 0; }