PAT 甲级1002 A+B for Polynomials (25)
1002. A+B for Polynomials (25)
时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue
This time, you are supposed to find A+B where A and B are two polynomials.
Input
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 ... NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, ..., K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10,0 <= NK < ... < N2 < N1 <=1000.
Output
For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.
Sample Input2 1 2.4 0 3.2 2 2 1.5 1 0.5Sample Output
3 2 1.5 1 2.9 0 3.2
题意:合并多项式
思路:简单的水题,不过注意细节,譬如合并之后某一项的系数为0,那么这一项不作考虑,需要去除。
若合并之后多项式值为0,直接输出0就行了(题目貌似也没特别说明这个情况该输出什么,坑)。
AC代码:
#define _CRT_SECURE_NO_DEPRECATE #include<iostream> #include<algorithm> #include<set> #include<queue> #include<cmath> #include<vector> #include<bitset> #include<string> using namespace std; const int N_MAX = 10+5; struct poly { int exp; double coe; bool operator <(const poly&b) const{ return exp < b.exp; } }; poly P1[N_MAX],P2[N_MAX],P[N_MAX]; int k1, k2; int main() { scanf("%d",&k1); for (int i = 0; i < k1;i++) { scanf("%d%lf",&P1[i].exp,&P1[i].coe); } scanf("%d",&k2); for (int i = 0; i < k2;i++) { scanf("%d%lf",&P2[i].exp,&P2[i].coe); } sort(P1, P1 + k1); sort(P2, P2 + k2); int t1 = 0, t2 = 0,t=0; while (t1<k1&&t2<k2) { double tmp=1;//不为0即可 if (P1[t1].exp == P2[t2].exp) { tmp= P1[t1].coe + P2[t2].coe; if (tmp) {//系数不为0,则要算进去 P[t].exp = P1[t1].exp; P[t].coe = P1[t1].coe + P2[t2].coe; } t1++; t2++; } else if (P1[t1].exp<P2[t2].exp) {//那个指数小用哪个 P[t].exp = P1[t1].exp; P[t].coe = P1[t1].coe; t1++; } else if (P1[t1].exp>P2[t2].exp) {//那个指数小用哪个 P[t].exp = P2[t2].exp; P[t].coe = P2[t2].coe; t2++; } if(tmp)t++; } while (t1 < k1) { P[t].exp = P1[t1].exp; P[t].coe = P1[t1].coe; t1++; t++; } while (t2 < k2) { P[t].exp = P2[t2].exp; P[t].coe = P2[t2].coe; t2++; t++; } if (t) { printf("%d ", t); for (int i = 0; i < t; i++) { printf("%d %.1f%c", P[t - i - 1].exp, P[t - i - 1].coe, i + 1 == t ? '\n' : ' '); } } else printf("%d\n",t); }