grad_cam下的自定义模型获取热力图
原文链接:https://blog.csdn.net/zxdd2018/article/details/125505352
另附:imagenet图对应https://www.cnblogs.com/cpxlll/p/13493247.html
1.(多张图片)
备注:gram_cam_1
import os
import numpy as np
import torch
import cv2
import matplotlib.pyplot as plt
import torchvision.models as models
from torchvision.transforms import Compose, Normalize, ToTensor
from cifar.resnet import ResNet32
class GradCAM():
'''
Grad-cam: Visual explanations from deep networks via gradient-based localization
Selvaraju R R, Cogswell M, Das A, et al.
https://openaccess.thecvf.com/content_iccv_2017/html/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.html
'''
def __init__(self, model, target_layers, input_size, use_cuda=True):
super(GradCAM).__init__()
self.use_cuda = use_cuda
self.model = model
self.target_layers = target_layers
self.target_layers.register_forward_hook(self.forward_hook)
self.target_layers.register_full_backward_hook(self.backward_hook)
self.activations = []
self.grads = []
self.input_size = input_size
def forward_hook(self, module, input, output):
self.activations.append(output[0])
def backward_hook(self, module, grad_input, grad_output):
self.grads.append(grad_output[0].detach())
def calculate_cam(self, model_input):
if self.use_cuda:
device = torch.device('cuda')
self.model.to(device)
model_input = model_input.to(device)
self.model.eval()
# forward
output, _ = self.model(model_input, 0) # 修改这里以匹配您模型的输出
y_hat = output
max_class = np.argmax(y_hat.cpu().data.numpy(), axis=1)
# backward
self.model.zero_grad()
y_c = y_hat[0, max_class]
y_c.backward()
# get activations and gradients
activations = self.activations[0].cpu().data.numpy().squeeze()
grads = self.grads[0].cpu().data.numpy().squeeze()
# calculate weights
weights = np.mean(grads.reshape(grads.shape[0], -1), axis=1)
weights = weights.reshape(-1, 1, 1)
cam = (weights * activations).sum(axis=0)
cam = np.maximum(cam, 0)
cam = cam / cam.max()
return cam
@staticmethod
def show_cam_on_image(image, cam, save_path=None):
h, w = image.shape[:2]
cam = cv2.resize(cam, (w, h)) # 调整热图的尺寸与图像相同
cam = cam / cam.max()
heatmap = cv2.applyColorMap((255 * cam).astype(np.uint8), cv2.COLORMAP_JET)
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
image = image / image.max()
heatmap = heatmap / heatmap.max()
result = 0.4 * heatmap + 0.6 * image
result = result / result.max()
plt.figure()
plt.imshow((result * 255).astype(np.uint8))
plt.colorbar(shrink=0.8)
plt.tight_layout()
if save_path:
plt.savefig(save_path)
# plt.show()
@staticmethod
def preprocess_image(img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
preprocessing = Compose([
ToTensor(),
Normalize(mean=mean, std=std)
])
return preprocessing(img.copy()).unsqueeze(0)
if __name__ == '__main__':
# 加载您的模型
# 假设您的模型保存在名为custom_model.pth.tar的文件中
checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint1/151_31.21.pth.tar' # 模型的路径,你需要替换成你保存的模型的路径
custom_model = ResNet32(num_classes=100) # 假设你使用的是CIFAR-100数据集
checkpoint = torch.load(checkpoint_path)
custom_model.load_state_dict(checkpoint['state_dict'])
folder_path = '/home/zy/pycharm/project/MetaSAug-main/test/fistcam/new_img/'
image_folders = [f for f in os.listdir(folder_path) if os.path.isdir(os.path.join(folder_path, f))]
for folder_name in image_folders:
folder_image_files = [f for f in os.listdir(os.path.join(folder_path, folder_name)) if
f.endswith(('.png', '.jpg', '.JPEG'))]
print(f"文件夹 {folder_name} 中的图片文件:")
for image_file in folder_image_files:
print(image_file)
image_dir = '/home/zy/pycharm/project/MetaSAug-main/test/fistcam/new_img/'+folder_name+'/'+image_file
image = cv2.imread(image_dir)
# 将图像调整为相同的大小
resized_image = cv2.resize(image, (375, 500)) # 修改为你希望的尺寸
input_tensor = GradCAM.preprocess_image(resized_image)
grad_cam = GradCAM(custom_model, custom_model.layer4[-1], (256, 256)) # 替换为您的目标层
cam = grad_cam.calculate_cam(input_tensor)
# 将热图调整为相同的大小
resized_cam = cv2.resize(cam, (resized_image.shape[1], resized_image.shape[0]))
save_path = '/home/zy/pycharm/project/MetaSAug-main/test/cam/cam_img/'+folder_name+'_'+image_file
GradCAM.show_cam_on_image(image, cam, save_path)
2.(单个图片)
备注:gram_cam_2
import os
import numpy as np
import torch
import cv2
import matplotlib.pyplot as plt
import torchvision.models as models
from torchvision.transforms import Compose, Normalize, ToTensor
from cifar.resnet import ResNet32
class GradCAM():
'''
Grad-cam: Visual explanations from deep networks via gradient-based localization
Selvaraju R R, Cogswell M, Das A, et al.
https://openaccess.thecvf.com/content_iccv_2017/html/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.html
'''
def __init__(self, model, target_layers, input_size, use_cuda=True):
super(GradCAM).__init__()
self.use_cuda = use_cuda
self.model = model
self.target_layers = target_layers
self.target_layers.register_forward_hook(self.forward_hook)
self.target_layers.register_full_backward_hook(self.backward_hook)
self.activations = []
self.grads = []
self.input_size = input_size
def forward_hook(self, module, input, output):
self.activations.append(output[0])
def backward_hook(self, module, grad_input, grad_output):
self.grads.append(grad_output[0].detach())
def calculate_cam(self, model_input):
if self.use_cuda:
device = torch.device('cuda')
self.model.to(device)
model_input = model_input.to(device)
self.model.eval()
# forward
output, _ = self.model(model_input, 0) # 修改这里以匹配您模型的输出
y_hat = output
max_class = np.argmax(y_hat.cpu().data.numpy(), axis=1)
# backward
self.model.zero_grad()
y_c = y_hat[0, max_class]
y_c.backward()
# get activations and gradients
activations = self.activations[0].cpu().data.numpy().squeeze()
grads = self.grads[0].cpu().data.numpy().squeeze()
# calculate weights
weights = np.mean(grads.reshape(grads.shape[0], -1), axis=1)
weights = weights.reshape(-1, 1, 1)
cam = (weights * activations).sum(axis=0)
cam = np.maximum(cam, 0)
cam = cam / cam.max()
# Resize CAM to match the input size
cam = cv2.resize(cam, (model_input.size(3), model_input.size(2)))
return cam
@staticmethod
def show_cam_on_image(image, cam, save_path=None):
h, w = image.shape[:2]
cam = cv2.resize(cam, (w, h)) # 调整热图的大小与原图像相同
cam = cam / cam.max()
heatmap = cv2.applyColorMap((255 * cam).astype(np.uint8), cv2.COLORMAP_JET)
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (w, h)) # 调整原始图像的大小与热图相同
image = image / image.max()
heatmap = heatmap / heatmap.max()
result = 0.4 * heatmap + 0.6 * image
result = result / result.max()
plt.figure()
plt.imshow((result * 255).astype(np.uint8))
plt.colorbar(shrink=0.8)
plt.tight_layout()
if save_path:
plt.savefig(save_path)
plt.show()
@staticmethod
def preprocess_image(img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
preprocessing = Compose([
ToTensor(),
Normalize(mean=mean, std=std)
])
return preprocessing(img.copy()).unsqueeze(0)
if __name__ == '__main__':
# 加载您的模型
# 假设您的模型保存在名为custom_model.pth.tar的文件中
# checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/1_1.21.pth.tar' # 模型的路径,你需要替换成你保存的模型的路径
checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/3_2.46.pth.tar' # 模型的路径,你需要替换成你保存的模型的路径
# checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/40_20.66.pth.tar' # 模型的路径,你需要替换成你保存的模型的路径
# checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/80_26.27.pth.tar' # 模型的路径,你需要替换成你保存的模型的路径
# checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/120_26.86.pth.tar' # 模型的路径,你需要替换成你保存的模型的路径
# checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/160_32.66.pth.tar' # 模型的路径,你需要替换成你保存的模型的路径
# checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint1/151_31.21.pth.tar' # 模型的路径,你需要替换成你保存的模型的路径
# checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/3_5.27.pth.tar' # 模型的路径,你需要替换成你保存的模型的路径
# checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/40_20.96.pth.tar' # 模型的路径,你需要替换成你保存的模型的路径
# checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/80_25.3.pth.tar' # 模型的路径,你需要替换成你保存的模型的路径
# checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/120_25.62.pth.tar' # 模型的路径,你需要替换成你保存的模型的路径
# checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/160_30.43.pth.tar' # 模型的路径,你需要替换成你保存的模型的路径
custom_model = ResNet32(num_classes=100) # 假设你使用的是CIFAR-100数据集
checkpoint = torch.load(checkpoint_path)
custom_model.load_state_dict(checkpoint['state_dict'])
image_dir = '/home/zy/Desktop/img2/n03792782_22692.JPEG'
image = cv2.imread(image_dir)
resized_image = cv2.resize(image, (256, 256)) # 修改为模型的输入尺寸
input_tensor = GradCAM.preprocess_image(resized_image)
grad_cam = GradCAM(custom_model, custom_model.layer4[-1], (256, 256)) # 替换为您的目标层
cam = grad_cam.calculate_cam(input_tensor)
save_path = '/home/zy/Desktop/img2/n03792782_22692_eda_1.jpg'
GradCAM.show_cam_on_image(image, cam, save_path)
3.附件(ResNet32)
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torch.autograd import Variable
import torch.nn.init as init
import warnings
import matplotlib.pyplot as plt
warnings.filterwarnings('ignore')
# 定义了一个基类MetaModule,它是所有其他模块的父类。
# MetaModule提供了一些用于处理参数和更新参数的方法。
class MetaModule(nn.Module):
# adopted from: Adrien Ecoffet https://github.com/AdrienLE
def params(self):
for name, param in self.named_params(self):
yield param
def named_leaves(self):
return []
def named_submodules(self):
return []
def named_params(self, curr_module=None, memo=None, prefix=''):
if memo is None:
memo = set()
if hasattr(curr_module, 'named_leaves'):
for name, p in curr_module.named_leaves():
if p is not None and p not in memo:
memo.add(p)
yield prefix + ('.' if prefix else '') + name, p
else:
for name, p in curr_module._parameters.items():
if p is not None and p not in memo:
memo.add(p)
yield prefix + ('.' if prefix else '') + name, p
for mname, module in curr_module.named_children():
submodule_prefix = prefix + ('.' if prefix else '') + mname
for name, p in self.named_params(module, memo, submodule_prefix):
yield name, p
def update_params(self, lr_inner, first_order=False, source_params=None, detach=False):
if source_params is not None:
for tgt, src in zip(self.named_params(self), source_params):
name_t, param_t = tgt
grad = src
if first_order:
grad = to_var(grad.detach().data)
tmp = param_t - lr_inner * grad
self.set_param(self, name_t, tmp)
else:
for name, param in self.named_params(self):
if not detach:
grad = param.grad
if first_order:
grad = to_var(grad.detach().data)
tmp = param - lr_inner * grad
self.set_param(self, name, tmp)
else:
param = param.detach_()
self.set_param(self, name, param)
def set_param(self, curr_mod, name, param):
if '.' in name:
n = name.split('.')
module_name = n[0]
rest = '.'.join(n[1:])
for name, mod in curr_mod.named_children():
if module_name == name:
self.set_param(mod, rest, param)
break
else:
setattr(curr_mod, name, param)
def detach_params(self):
for name, param in self.named_params(self):
self.set_param(self, name, param.detach())
def copy(self, other, same_var=False):
for name, param in other.named_params():
if not same_var:
param = to_var(param.data.clone(), requires_grad=True)
self.set_param(name, param)
# 线性层:继承自MetaModule类,并重写了前向传播方法。
class MetaLinear(MetaModule):
def __init__(self, *args, **kwargs):
super().__init__()
ignore = nn.Linear(*args, **kwargs)
self.register_buffer('weight', to_var(ignore.weight.data, requires_grad=True))
self.register_buffer('bias', to_var(ignore.bias.data, requires_grad=True))
def forward(self, x):
return F.linear(x, self.weight, self.bias)
def named_leaves(self):
return [('weight', self.weight), ('bias', self.bias)]
# 归一化线性层:继承自MetaModule类,并重写了前向传播方法。
class MetaLinear_Norm(MetaModule):
def __init__(self, *args, **kwargs):
super().__init__()
temp = nn.Linear(*args, **kwargs)
temp.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)
self.register_buffer('weight', to_var(temp.weight.data.t(), requires_grad=True))
self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)
def forward(self, x):
out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0))
return out
def named_leaves(self):
return [('weight', self.weight)]
# 卷积层:继承自MetaModule类,并重写了前向传播方法。
class MetaConv2d(MetaModule):
def __init__(self, *args, **kwargs):
super().__init__()
ignore = nn.Conv2d(*args, **kwargs)
self.in_channels = ignore.in_channels
self.out_channels = ignore.out_channels
self.stride = ignore.stride
self.padding = ignore.padding
self.dilation = ignore.dilation
self.groups = ignore.groups
self.kernel_size = ignore.kernel_size
self.register_buffer('weight', to_var(ignore.weight.data, requires_grad=True))
if ignore.bias is not None:
self.register_buffer('bias', to_var(ignore.bias.data, requires_grad=True))
else:
self.register_buffer('bias', None)
def forward(self, x):
return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
def named_leaves(self):
return [('weight', self.weight), ('bias', self.bias)]
# 转置卷积层:继承自MetaModule类,并重写了前向传播方法。
class MetaConvTranspose2d(MetaModule):
def __init__(self, *args, **kwargs):
super().__init__()
ignore = nn.ConvTranspose2d(*args, **kwargs)
self.stride = ignore.stride
self.padding = ignore.padding
self.dilation = ignore.dilation
self.groups = ignore.groups
self.register_buffer('weight', to_var(ignore.weight.data, requires_grad=True))
if ignore.bias is not None:
self.register_buffer('bias', to_var(ignore.bias.data, requires_grad=True))
else:
self.register_buffer('bias', None)
def forward(self, x, output_size=None):
output_padding = self._output_padding(x, output_size)
return F.conv_transpose2d(x, self.weight, self.bias, self.stride, self.padding,
output_padding, self.groups, self.dilation)
def named_leaves(self):
return [('weight', self.weight), ('bias', self.bias)]
# 批归一化层:继承自MetaModule类,并重写了前向传播方法。
class MetaBatchNorm2d(MetaModule):
def __init__(self, *args, **kwargs):
super().__init__()
ignore = nn.BatchNorm2d(*args, **kwargs)
self.num_features = ignore.num_features
self.eps = ignore.eps
self.momentum = ignore.momentum
self.affine = ignore.affine
self.track_running_stats = ignore.track_running_stats
if self.affine:
self.register_buffer('weight', to_var(ignore.weight.data, requires_grad=True))
self.register_buffer('bias', to_var(ignore.bias.data, requires_grad=True))
if self.track_running_stats:
self.register_buffer('running_mean', torch.zeros(self.num_features))
self.register_buffer('running_var', torch.ones(self.num_features))
else:
self.register_parameter('running_mean', None)
self.register_parameter('running_var', None)
def forward(self, x):
return F.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias,
self.training or not self.track_running_stats, self.momentum, self.eps)
def named_leaves(self):
return [('weight', self.weight), ('bias', self.bias)]
class LambdaLayer(MetaModule):
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
# BasicBlock类,它是ResNet中的基本块。它继承自MetaModule类,并重写了前向传播方法。
class BasicBlock(MetaModule):
expansion = 1
def __init__(self, in_planes, planes, stride=1, option='A'):
super(BasicBlock, self).__init__()
self.conv1 = MetaConv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = MetaBatchNorm2d(planes)
self.conv2 = MetaConv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = MetaBatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
if option == 'A':
self.shortcut = LambdaLayer(lambda x:
F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes // 4, planes // 4), "constant",
0))
elif option == 'B':
self.shortcut = nn.Sequential(
MetaConv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
MetaBatchNorm2d(self.expansion * planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
# for metamodel
# 定义了ResNet32类,它是一个完整的ResNet模型。
# 它继承自MetaModule类,并定义了ResNet的整体结构和前向传播方法。
class ResNet32_meta(MetaModule):
# _first_init_done = False
def __init__(self, num_classes, block=BasicBlock, num_blocks=[5, 5, 5]):
super(ResNet32_meta, self).__init__()
self.in_planes = 16
self.conv1 = MetaConv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = MetaBatchNorm2d(16)
self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
self.linear = MetaLinear(64, num_classes)
self.apply(_weights_init)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x, epoch):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.avg_pool2d(out, out.size()[3])
out = out.view(out.size(0), -1)
y = self.linear(out)
return out, y
# for main
class ResNet32(MetaModule):
def __init__(self, num_classes, block=BasicBlock, num_blocks=[5, 5, 5, 5]):
super(ResNet32, self).__init__()
self.in_planes = 16
self.conv1 = MetaConv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = MetaBatchNorm2d(16)
self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 128, num_blocks[3], stride=2)
# Add
# print("Using self attention")
# self.modulatedatt = ModulatedAttLayer(in_channels=64 * block.expansion)
#
#
# self.cbam = CBAM(64 * block.expansion, 64)
# self.scse1 = SCse(16*block.expansion)
# self.scse2 = SCse(32*block.expansion)
# self.scse3 = SCse(64*block.expansion)
self.linear = MetaLinear(128, num_classes)
self.apply(_weights_init)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x, epoch):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, out.size()[3])
# out = F.avg_pool2d(out, kernel_size=(13, 18))
out = out.view(out.size(0), -1)
y = self.linear(out)
return out, y
def to_var(x, requires_grad=True):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x, requires_grad=requires_grad)
def _weights_init(m):
classname = m.__class__.__name__
if isinstance(m, MetaLinear) or isinstance(m, MetaConv2d):
init.kaiming_normal(m.weight)