Codeforces 1401F. Reverse and Swap 【线段树】
题目链接
题目描述:
对于一个长度为\(2^n\)的数组有以下四种操作,共q次操作
Replace(x, k):将\(a_x\)换成\(k\);
Reverse(k):从1开始reverse长度为\(2^k\)的区间;
Swap(k):从1开始交换长度为\(2^k\)相邻的两个区间;
Sum(l, r):对\(l到r\)求和;
思路:
可以发现这是一颗满二叉树,假设线段树的初始深度为1,那么可以发现,对于一次swap操作,就是把线段树的\(n - k\)层的每相邻两个区间进行交换,对于一次reverse操作,就是把线段树的\(n - k + 1\)层到\(n\)层进行了交换,所以开一个额外数组记录以下每一层所进行变换的次数。最后在查询的或者更改的时候,对于每一层判断以下是否存在奇数个交换即可。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = (1 << 18) + 10;
LL a[N], sum[N << 2];
int depth[N << 2];
void build(int u, int l, int r, int dep) {
depth[u] = dep;
if(l == r) {
scanf("%lld", &sum[u]);
return;
}
int mid = l + r >> 1;
build(u << 1, l, mid, dep + 1);
build(u << 1 | 1, mid + 1, r, dep + 1);
sum[u] = sum[u << 1] + sum[u << 1 | 1];
}
void update(int u, int l, int r, int x, int num) {
if (x < l || r < x) return;
if(l == r && l == x) {
sum[u] = num;
return;
}
int mid = l + r >> 1, dep = depth[u];
if(a[dep] & 1) {
update(u << 1 | 1, l, mid, x, num);
update(u << 1, mid + 1, r, x, num);
} else {
update(u << 1, l, mid, x, num);
update(u << 1 | 1, mid + 1, r, x, num);
}
sum[u] = sum[u << 1] + sum[u << 1 | 1];
}
LL query(int u, int l, int r, int L, int R) {
if(R < l || L > r) return 0;
if(L <= l && r <= R) {
return sum[u];
}
int dep = depth[u], mid = l + r >> 1;
LL sum = 0;
if(a[dep] & 1) {
sum += query(u << 1, mid + 1, r, L, R);
sum += query(u << 1 | 1, l, mid, L, R);
} else {
sum += query(u << 1, l, mid, L, R);
sum += query(u << 1 | 1, mid + 1, r, L, R);
}
return sum;
}
void solve() {
int n, q;
scanf("%d%d", &n, &q);
int m = 1 << n;
build(1, 1, m, 1);
while(q--) {
int op; scanf("%d", &op);
if(op == 1) {
int x, num; scanf("%d%d", &x, &num);
update(1, 1, m, x, num);
}
else if (op == 2) {
int k; scanf("%d", &k);
for(int i = n - k + 1; i <= n; i++) {
a[i]++;
}
}
else if (op == 3) {
int k; scanf("%d", &k);
a[n - k]++;
}
else {
int l, r; scanf("%d%d", &l, &r);
printf("%lld\n", query(1, 1, m, l, r));
}
}
}
int main() {
// freopen("in.txt", "r", stdin);
solve();
return 0;
}
tips:有时候线段树的题目不用按照结构体的风格来写,区间之间的变换这种方法更好写,不然就要在update和query时改变x和l,r了。
要能够灵活运用