AFO

Wannafly挑战赛27

于是说好带我上分拿购物卡的asuldb神仙自己咕咕掉分了
还好我rateing低 ~(~ ̄▽ ̄)~


链接:B
来源:牛客网

给出一棵仙人掌(每条边最多被包含于一个环,无自环,无重边,保证连通),要求用最少的颜色对其顶点染色,满足每条边两个端点的颜色不同,输出最小颜色数即可


结论:ans=1/2/3
没有边ans=1, 没有三角形ans=2,否则ans=3

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define max(a,b) ((a)>(b)? (a):(b))
#define min(a,b) ((a)<(b)? (a):(b))

using namespace std;
int i,m,n,j,k,a[1000001],ver[1000001],edge[1000001],nex[1000001],cnt,d[1000001],head[1000001],x,y;

void add(int x,int y)
{
	cnt+=1;
	ver[cnt]=y; nex[cnt]=head[x]; head[x]=cnt;
}

bool dfs(int now)
{
	for(int i=head[now];i;i=nex[i])
	{
		int t=ver[i];
		if(d[t]==d[now]) return 0;
		if(!d[t])
        {
            d[t]=d[now]%2+1;
            if(!dfs(t)) return 0;
        }
	}
	return 1;
}

int main()
{
	scanf("%d%d",&n,&m);
	for(i=1;i<=m;i++)
	{
		scanf("%d%d",&x,&y);
		add(x,y);
		add(y,x);
	}
	if(n==0)
	{
		printf("0");
		return 0;
	}
	if(m==0) 
	{
		printf("1");
		return 0;
	}
	d[1]=1;
	if(dfs(1)) printf("2");
	else printf("3");
}

链接:C
来源:牛客网

给出一棵树,求有多少种删边方案,使得删后的图每个连通块大小小于等于k,两种方案不同当且仅当存在一条边在一个方案中被删除,而在另一个方案中未被删除,答案对998244353取模


卡常!卡常!!卡常!!!严重卡常!!!!!
enter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description here

这是第一次提交能跑出正解
然后


enter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description here

写题1h卡常1.5h
enter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description hereenter image description here


所以这个sxbk的程序张这样

#pragma GCC diagnostic error "-std=c++14"
#pragma GCC target("avx")
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("-fipa-sra")
#pragma GCC optimize("-ftree-pre")
#pragma GCC optimize("-ftree-vrp")
#pragma GCC optimize("-fpeephole2")
#pragma GCC optimize("-ffast-math")
#pragma GCC optimize("-fsched-spec")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-falign-jumps")
#pragma GCC optimize("-falign-loops")
#pragma GCC optimize("-falign-labels")
#pragma GCC optimize("-fdevirtualize")
#pragma GCC optimize("-fcaller-saves")
#pragma GCC optimize("-fcrossjumping")
#pragma GCC optimize("-fthread-jumps")
#pragma GCC optimize("-funroll-loops")
#pragma GCC optimize("-fwhole-program")
#pragma GCC optimize("-freorder-blocks")
#pragma GCC optimize("-fschedule-insns")
#pragma GCC optimize("inline-functions")
#pragma GCC optimize("-ftree-tail-merge")
#pragma GCC optimize("-fschedule-insns2")
#pragma GCC optimize("-fstrict-aliasing")
#pragma GCC optimize("-fstrict-overflow")
#pragma GCC optimize("-falign-functions")
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("-fcse-follow-jumps")
#pragma GCC optimize("-fsched-interblock")
#pragma GCC optimize("-fpartial-inlining")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("-freorder-functions")
#pragma GCC optimize("-findirect-inlining")
#pragma GCC optimize("-fhoist-adjacent-loads")
#pragma GCC optimize("-frerun-cse-after-loop")
#pragma GCC optimize("inline-small-functions")
#pragma GCC optimize("-finline-small-functions")
#pragma GCC optimize("-ftree-switch-conversion")
#pragma GCC optimize("-foptimize-sibling-calls")
#pragma GCC optimize("-fexpensive-optimizations")
#pragma GCC optimize("-funsafe-loop-optimizations")
#pragma GCC optimize("inline-functions-called-once")
#pragma GCC optimize("-fdelete-null-pointer-checks")
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
#define M 998244353
#define RI register int
#define max(a,b) ((a)>(b)? (a):(b))
#define min(a,b) ((a)<(b)? (a):(b))
   
using namespace std;
   
int m,n,k,f[2001][2001], head[4001], nex[4001], ver[4001], cnt,s[4001],x,y,ans;
   
inline void add(int x,int y)
{
    cnt+=1;
    ver[cnt]=y; nex[cnt]=head[x]; head[x]=cnt;
}
   
   
inline char gc()
{
    static char now[1<<22],*S,*T;
    if (T==S)
    {
        T=(S=now)+fread(now,1,1<<22,stdin);
        if (T==S) return EOF;
    }
    return *S++;
}
inline int read()
{
    register int x=0,f=1;
    register char ch=gc();
    while(!isdigit(ch))
    {
        if (ch=='-') f=-1;
        ch=gc();
    }
    while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=gc();
    return x*f;
}
   
void dfs(int now,int fa)
{
    s[now]=1;
    f[now][1]=1;
    for(RI i=head[now];i;i=nex[i])
    {
        int t=ver[i];
        if(t==fa) continue;
        dfs(t,now);
        s[now]+=s[t];
        for(RI j=min(s[now],k);j>0;--j)
        {
            if(f[t][0]!=0 &&f[t][0]!=1) f[now][j]=((LL)f[now][j]*f[t][0])%M;
            if(j==1) continue;
            for(RI l=1;l<=min(s[t],j-1);++l)
            {
                if(f[now][j-l]==0 || f[t][l]==0) continue;
                int o=(LL)f[now][j-l]*f[t][l]%M;
                if(f[now][j]+o<M) f[now][j]=(f[now][j]+o);
                else f[now][j]=f[now][j]+o-M;
            }
        }
    }
       
    for(RI i=1;i<=min(s[now],k);++i)
    {
        if(!f[now][i]) break;
        if(f[now][0]+f[now][i]<M) f[now][0]=f[now][0]+f[now][i];
        else f[now][0]=(f[now][0]+f[now][i])-M;
    }
}
   
int main()
{
    n=read(); k=read();
    for(RI i=1;i<n;++i)
    {
        x=read(); y=read();
        add(x,y); add(y,x);
    }
    dfs(1,0);
  
    printf("%d",f[1][0]);
}

posted @ 2019-10-12 16:01  ZUTTER☮  阅读(150)  评论(0编辑  收藏  举报