Loading

synchronized详解

1. MarkWord详解

image

以上是Java对象处于5种不同状态时,Mark Word的表现形式,上面每一行代表对象处于某种状态时的样子。其中各部分的含义如下:

  • lock:2位的锁状态标记位,由于希望用尽可能少的二进制位表示尽可能多的信息,所以设置了lock标记。该标记的值不同,整个Mark Word表示的含义不同。biased_lock和lock一起,表达的锁状态含义如下:

    image

  • biased_lock:对象是否启用偏向锁标记,只占1个二进制位。为1时表示对象启用偏向锁,为0时表示对象没有偏向锁。lock和biased_lock共同表示对象处于什么锁状态。

  • age:4位的Java对象年龄。在GC中,如果对象在Survivor区复制一次,年龄增加1。当对象达到设定的阈值时,将会晋升到老年代。默认情况下,并行GC的年龄阈值为15。由于age只有4位,所以最大值为15,这就是-XX:MaxTenuringThreshold选项最大值为15的原因。

  • identity_hashcode:31位的对象标识hashCode,采用延迟加载技术。调用方法System.identityHashCode()计算,并将该值存储到Mark Word中。后续如果该对象的hashCode()方法再次被调用则不会再通过JVM进行计算得到,而是直接从Mark Word中获取。只有这样才能保证多次获取到的identity hash code的值是相同的(以jdk8为例,JVM默认的计算identity hash code的方式得到的是一个随机数,因而我们必须要保证一个对象的identity hash code只能被底层JVM计算一次),当一个对象已经计算过identity hash code,它就无法进入偏向锁状态,对于偏向锁,在线程获取偏向锁时,会用Thread ID和epoch值覆盖identity hash code所在的位置。如果一个对象的hashCode()方法已经被调用过一次之后,这个对象还能被设置偏向锁么?答案是不能。因为如果可以的化,那Mark Word中的identity hash code必然会被偏向线程Id给覆盖,这就会造成同一个对象前后两次调用hashCode()方法得到的结果不一致。当一个对象当前正处于偏向锁状态,并且需要计算其identity hash code的话,则它的偏向锁会被撤销,并且锁会膨胀为轻量级锁或者重量锁;轻量级锁的实现中,会通过线程栈帧的锁记录(Lock Record)存储Displaced Mark Word;重量锁的实现中,ObjectMonitor类里有字段可以记录非加锁状态下的mark word,其中可以存储identity hash code的值。

  • thread:持有偏向锁的线程ID。

  • epoch:批量重偏向与批量撤销。从偏向锁的加锁解锁过程中可看出,当只有一个线程反复进入同步块时,偏向锁带来的性能开销基本可以忽略,但是当有其他线程尝试获得锁时,就需要等到safe point时,再将偏向锁撤销为无锁状态或升级为轻量级,会消耗一定的性能,所以在多线程竞争频繁的情况下,偏向锁不仅不能提高性能,还会导致性能下降。于是,就有了批量重偏向与批量撤销的机制。原理以class为单位,为每个class维护批量重偏向(bulk rebias)机制是为了解决一个线程创建了大量对象并执行了初始的同步操作,后来另一个线程也来将这些对象作为锁对象进行操作,这样会导致大量的偏向锁撤销操作。批量撤销(bulk revoke)机制是为了解决:在明显多线程竞争剧烈的场景下使用偏向锁是不合适的。一个偏向锁撤销计数器,每一次该class的对象发生偏向撤销操作时,该计数器+1,当这个值达到重偏向阈值(默认20)时,JVM就认为该class的偏向锁有问题,因此会进行批量重偏向。每个class对象会有一个对应的epoch字段,每个处于偏向锁状态对象的Mark Word中也有该字段,其初始值为创建该对象时class中的epoch的值。每次发生批量重偏向时,就将该值+1,同时遍历JVM中所有线程的栈,找到该class所有正处于加锁状态的偏向锁,将其epoch字段改为新值。下次获得锁时,发现当前对象的epoch值和class的epoch不相等,那就算当前已经偏向了其他线程,也不会执行撤销操作,而是直接通过CAS操作将其Mark Word的Thread Id 改成当前线程Id。当达到重偏向阈值后,假设该class计数器继续增长,当其达到批量撤销的阈值后(默认40),JVM就认为该class的使用场景存在多线程竞争,会标记该class为不可偏向,之后,对于该class的锁,直接走轻量级锁的逻辑。

  • ptr_to_lock_record:轻量级锁状态下,指向栈中锁记录的指针(Lock Record)。

  • ptr_to_heavyweight_monitor:重量级锁状态下,指向对象监视器Monitor的指针(ObjectMonitor)。

2. synchronized详解

2.1 用户态与内核态

JDK早期,synchronized 叫做重量级锁, 因为申请锁资源必须通过kernel, 系统调用(80中断)

image

2.2 synchronized实现原理

2.2.1 java源码层级

synchronized(o)

2.2.2 字节码层级

同步方法:ACC_SYNCHRONIZED

image

同步代码块:monitorenter、moniterexit

image

2.2.3 JVM层级(Hotspot)

synchronizer.cpp中InterpreterRuntime:: monitorenter方法

IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
#ifdef ASSERT
  thread->last_frame().interpreter_frame_verify_monitor(elem);
#endif
  if (PrintBiasedLockingStatistics) {
    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  }
  Handle h_obj(thread, elem->obj());
  assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
         "must be NULL or an object");
  if (UseBiasedLocking) {
    // Retry fast entry if bias is revoked to avoid unnecessary inflation
    ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
  } else {
    ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
  }
  assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
         "must be NULL or an object");
#ifdef ASSERT
  thread->last_frame().interpreter_frame_verify_monitor(elem);
#endif
IRT_END
  
void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
 if (UseBiasedLocking) {
    if (!SafepointSynchronize::is_at_safepoint()) {
      BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
      if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
        return;
      }
    } else {
      assert(!attempt_rebias, "can not rebias toward VM thread");
      BiasedLocking::revoke_at_safepoint(obj);
    }
    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 }

 slow_enter (obj, lock, THREAD) ;
}

void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
  markOop mark = obj->mark();
  assert(!mark->has_bias_pattern(), "should not see bias pattern here");

  if (mark->is_neutral()) {
    // Anticipate successful CAS -- the ST of the displaced mark must
    // be visible <= the ST performed by the CAS.
    lock->set_displaced_header(mark);
    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
      TEVENT (slow_enter: release stacklock) ;
      return ;
    }
    // Fall through to inflate() ...
  } else
  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
    assert(lock != mark->locker(), "must not re-lock the same lock");
    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
    lock->set_displaced_header(NULL);
    return;
  }

#if 0
  // The following optimization isn't particularly useful.
  if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
    lock->set_displaced_header (NULL) ;
    return ;
  }
#endif

  // The object header will never be displaced to this lock,
  // so it does not matter what the value is, except that it
  // must be non-zero to avoid looking like a re-entrant lock,
  // and must not look locked either.
  lock->set_displaced_header(markOopDesc::unused_mark());
  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
}

inflate方法:膨胀为重量级锁

2.2.4 OS和硬件层面

lock指令

2.3 锁升级过程

2.3.1 锁类型

无锁 - 偏向锁 - 轻量级锁(自旋锁)- 重量级锁

2.3.2 Markword和锁升级

image

image

JVM一般是这样使用锁和Mark Word的:

  1. 当没有被当成锁时,这就是一个普通的对象,Mark Word记录对象的HashCode,锁标志位是01,是否偏向锁那一位是0。

  2. 当对象被当做同步锁并有一个线程A抢到了锁时,锁标志位还是01,但是否偏向锁那一位改成1,前23bit记录抢到锁的线程id,表示进入偏向锁状态。【默认情况 偏向锁有个时延,默认是4秒,因为JVM虚拟机自己有一些默认启动的线程,里面有好多sync代码,这些sync代码启动时就知道肯定会有竞争,如果使用偏向锁,就会造成偏向锁不断的进行锁撤销和锁升级的操作,效率较低。jvm偏向锁延时参数 -XX:BiasedLockingStartupDelay】

  3. 当线程A再次试图来获得锁时,JVM发现同步锁对象的标志位是01,是否偏向锁是1,也就是偏向状态,Mark Word中记录的线程id就是线程A自己的id,表示线程A已经获得了这个偏向锁,可以执行同步锁的代码。

  4. 当线程B试图获得这个锁时,JVM发现同步锁处于偏向状态,但是Mark Word中的线程id记录的不是B,那么线程B会先用CAS操作试图获得锁,这里的获得锁操作是有可能成功的,因为线程A一般不会自动释放偏向锁。如果抢锁成功,就把Mark Word里的线程id改为线程B的id,代表线程B获得了这个偏向锁,可以执行同步锁代码。如果抢锁失败,则继续执行步骤5。

  5. 偏向锁状态抢锁失败,代表当前锁有一定的竞争,偏向锁将升级为轻量级锁。JVM会在当前线程的线程栈中开辟一块单独的空间(LockRecord),里面保存指向对象锁Mark Word的指针,同时在对象锁Mark Word中保存指向这片空间的指针。上述两个保存操作都是CAS操作,如果保存成功,代表线程抢到了同步锁,就把Mark Word中的锁标志位改成00,可以执行同步锁代码。如果保存失败,表示抢锁失败,竞争太激烈,继续执行步骤6。

  6. 轻量级锁抢锁失败,JVM会使用自旋锁,自旋锁不是一个锁状态,只是代表不断的重试,尝试抢锁。从JDK6开始,自旋锁默认启用,自旋次数由JVM决定。如果抢锁成功则执行同步锁代码,如果失败则继续执行步骤7。【竞争加剧:有线程超过10次自旋, -XX:PreBlockSpin, 或者自旋线程数超过CPU核数的一半, 1.6之后,加入自适应自旋 Adapative Self Spinning , JVM自己控制】【每个线程有自己的LockRecord在自己的线程栈上,用CAS去争用markword的LR的指针,指针指向哪个线程的LR,哪个线程就拥有锁,自旋超过10次,升级为重量级锁 - 如果太多线程自旋 CPU消耗过大,不如升级为重量级锁,进入等待队列(不消耗CPU)-XX:PreBlockSpin。自旋锁在 JDK1.4.2 中引入,使用 -XX:+UseSpinning 来开启。JDK 6 中变为默认开启,并且引入了自适应的自旋锁(自适应自旋锁)。自适应自旋锁意味着自旋的时间(次数)不再固定,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也是很有可能再次成功,进而它将允许自旋等待持续相对更长的时间。如果对于某个锁,自旋很少成功获得过,那在以后尝试获取这个锁时将可能省略掉自旋过程,直接阻塞线程,避免浪费处理器资源。偏向锁由于有锁撤销的过程revoke,会消耗系统资源,所以,在锁争用特别激烈的时候,用偏向锁未必效率高。还不如直接使用轻量级锁。】

  7. 自旋锁重试之后如果抢锁依然失败,同步锁会升级至重量级锁,锁标志位改为10。在这个状态下,未抢到锁的线程都会被阻塞。【向操作系统申请资源,linux mutex , CPU从3级-0级系统调用,线程挂起,进入等待队列,等待操作系统的调度,然后再映射回用户空间,80中断】

2.4 锁重入

sychronized是可重入锁

重入次数必须记录,因为要解锁几次必须得对应

偏向锁、自旋锁重入次数是记录在线程栈LockRecord中(重入多少次就有多少个LockRecord)

重量级锁重入次数是记录ObjectMonitor类中字段上

2.5 synchronized最底层实现

public class T {
    static volatile int i = 0;
    
    public static void n() { i++; }
    
    public static synchronized void m() {}
    
    publics static void main(String[] args) {
        for(int j=0; j<1000_000; j++) {
            m();
            n();
        }
    }
}

java -XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly T

C1 Compile Level 1 (一级优化)

C2 Compile Level 2 (二级优化)

找到m() n()方法的汇编码,会看到 lock comxchg .....指令

2.6 synchronized vs Lock (CAS)

在高争用 高耗时的环境下synchronized效率更高

在低争用 低耗时的环境下CAS效率更高

synchronized到重量级之后是等待队列(不消耗CPU)

CAS(等待期间消耗CPU)

Synchronized和ReentrantLock的区别

1.Synchronized是JVM层次的锁实现,ReentrantLock是JDK层次的锁实现
2.Synchronized的锁状态是无法在代码中直接判断的,但是ReentrantLock可以通过ReentrantLock#isLocked判断
3.Synchronized是非公平锁,ReentrantLock是可以公平也可以非公平
4.Synchronized是不可以被中断的,而ReentrantLock#lockInterruptibly方法可以被中断的
5.在发生异常时Synchronized会自动释放锁(由javac编译时自动实现),而ReentrantLock需要开发者在finally块中显示释放锁
6.ReentrantLock获取锁的形式有多种,如立即返回是否成功的tryLock(),以及等待指定时长的获取

2.7 锁消除 lock eliminate

public void add(String str1,String str2){
         StringBuffer sb = new StringBuffer();
         sb.append(str1).append(str2);
}

我们都知道 StringBuffer 是线程安全的,因为它的关键方法都是被 synchronized 修饰过的,但我们看上面这段代码,我们会发现,sb 这个引用只会在 add 方法中使用,不可能被其它线程引用(因为是局部变量,栈私有),因此 sb 是不可能共享的资源,JVM 会自动消除 StringBuffer 对象内部的锁。

2.8 锁粗化 lock coarsening

public String test(String str){
       
       int i = 0;
       StringBuffer sb = new StringBuffer():
       while(i < 100){
           sb.append(str);
           i++;
       }
       return sb.toString():
}

JVM 会检测到这样一连串的操作都对同一个对象加锁(while 循环内 100 次执行 append,没有锁粗化的就要进行 100 次加锁/解锁),此时 JVM 就会将加锁的范围粗化到这一连串的操作的外部(比如 while 虚幻体外),使得这一连串操作只需要加一次锁即可。

2.9 锁降级

https://www.zhihu.com/question/63859501

其实,只被VMThread访问,降级也就没啥意义了。所以可以简单认为锁降级不存在!

3. 思考

  • 为什么有自旋锁还需要重量级锁?

自旋是消耗CPU资源的,如果锁的时间长,或者自旋线程多,CPU会被大量消耗。重量级锁有等待队列,所有拿不到锁的进入等待队列,不需要消耗CPU资源

  • 偏向锁是否一定比自旋锁效率高?

不一定,在明确知道会有多线程竞争的情况下,偏向锁肯定会涉及锁撤销,这时候直接使用自旋锁。JVM启动过程,会有很多线程竞争(明确),所以默认情况启动时不打开偏向锁,过一段儿时间再打开

posted @ 2021-12-21 12:04  ZT丶  阅读(230)  评论(0编辑  收藏  举报