摘要: 题意:有m个人,每人只有一张50元,还有n个人,每人只有一张100元,这些人排队买50元的电影票。售票处一开始没有钱,问要让这m+n个人全部顺利买票的排队方法有多少种。分析:把只有50元的人记为0,把只有100元的人记为1,问题等价于,m个0,n个1组成的序列中,由左向右累计,在任意一个位置的0的累计数都不少于1的累计数的序列有多少排列方式,结果再乘以m!n!(因为每个人都是不同的)。这道题有一个巧妙的解法:n=0时,答案显然是m!m=n的情况。m=6,n=6时,一个非法的序列例如,001101100011(6个0,6个1),把第一个使序列非法的1右面的每个位翻转,即变成00110111110 阅读全文
posted @ 2013-11-06 15:41 Hogg 阅读(473) 评论(0) 推荐(0) 编辑