hdoj 1024

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 35117    Accepted Submission(s): 12510


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 

 

Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 

 

Output
Output the maximal summation described above in one line.
 
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.
 
题意:输入m,n,然后有n个数,求m段总和最大。
这道题前面想着把它分为m段,然后求这m段的最大子段和。后来越弄越糟,直接放弃这个思路。又想着暴力组合一下各个的和。想不出思路,就去找题解了。(萌新果然还是太嫩了qwq)
 
后面,单纯只看到这个状态转移方程都写不出能a的代码。。。。。
状态转移方程:  dp[i][j]=max(dp[i][j-1]+num[j],dp(i-1,t)+num[j])   其中i-1<=t<=j-1.
 1 #include<cstdio>
 2 using namespace std;
 3 const int maxn=1000006;
 4 int a[maxn],dp[maxn];
 5 
 6 int my_max(int x,int y)
 7 {
 8     return x>y?x:y;
 9 }
10 
11 int main()
12 {
13     int n,m;
14     while( ~scanf("%d%d",&m,&n)){
15 
16         for(int i=1;i<=n;i++){
17             scanf("%d",&a[i]);
18             dp[i]=0;
19         }
20 
21         int temp;
22         for(int i=1;i<=m;i++){
23             temp=0;
24             for(int j=1;j<=i;j++)
25                 temp+=a[j];
26             dp[n]=temp;
27 
28             for(int j=i+1;j<=n;j++){
29                 temp=my_max( dp[j-1], temp)+a[j];
30                 dp[j-1]=dp[n];
31                 dp[n]=my_max( dp[n], temp);
32             }
33         }
34 
35         printf("%d\n",dp[n]);
36     }
37     return 0;
38 }

https://www.cnblogs.com/dongsheng/archive/2013/05/28/3104629.html

 
 1 #include<cstdio>
 2 #include<climits>
 3 #include<cstring>
 4 #include<iostream>
 5 const int maxn=1000006;
 6 int m,n;
 7 int data[maxn], cur[maxn], pre[maxn];
 8 
 9 int Maxsum()
10 {
11     int max_sum;
12     for(int i=1;i<=m;i++){
13         max_sum=INT_MIN;
14         
15         for(int j=i;j<=n;j++){
16             if(cur[j-1]<pre[j-1])
17                 cur[j]=pre[j-1]+data[j];
18             else 
19                 cur[j]=cur[j-1]+data[j];
20 
21             pre[j-1]=max_sum;
22             
23             if(max_sum<cur[j])
24                 max_sum=cur[j];
25         }
26 
27     }
28     return max_sum;
29 }
30 
31 int main()
32 {
33     while( ~scanf("%d%d", &m,&n)){
34         memset( cur, 0, sizeof cur);
35         memset( pre, 0, sizeof pre);
36 
37         for(int i=1;i<=n;i++)
38             scanf("%d",&data[i]);
39         printf("%d\n",Maxsum());
40     }
41     return 0;
42 }

这个相对好理解。

 
posted @ 2018-05-23 16:10  flyer_duck  阅读(183)  评论(0编辑  收藏  举报