POJ-2955括号匹配问题(区间DP)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 4834 | Accepted: 2574 |
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((())) ()()() ([]]) )[)( ([][][) end
Sample Output
6
6 4 0 6
Difficulty: (1).状态:dp[i][j]为i~j的最大括号数。
(2). 转移:考虑第i个括号,有两种情况:
1.i无效,直接算dp[i + 1][j];
2.找到和i匹配的右括号k,分两边算并加起来。dp[i][j] = dp[i+1][k-1] + 2 + dp[k + 1][j]
感想:记忆化搜索实质上就是暴力枚举。
#include <cstdio> #include <iostream> #include <cstdlib> #include <algorithm> #include <ctime> #include <cmath> #include <string> #include <cstring> #include <stack> #include <queue> #include <list> #include <vector> #include <map> #include <set> using namespace std; const int INF=0x3f3f3f3f; const double eps=1e-10; const double PI=acos(-1.0); #define maxn 1100 char a[maxn]; int dp[maxn][maxn]; int is(char b, char c) { if(b == '(' && c == ')' || b == '[' && c == ']') return 1; else return 0; } int dfs(int st, int ed) { // if(st > ed) return 0; if(st == ed) return 0; if(dp[st][ed] != -1) return dp[st][ed]; int res = dfs(st+1, ed); for(int k = st+1; k <= ed; k++) if(is(a[st],a[k])) { res = max(res,dfs(st+1,k-1) + 2 + dfs(k+1,ed)); flag = 1; } dp[st][ed] = res; return dp[st][ed]; } int main() { while(~scanf("%s", a)) { if(strcmp(a, "end") == 0) break; memset(dp, -1, sizeof dp); int ed = strlen(a)-1; printf("%d\n", dfs(0, ed)); } return 0; }