Some Simple Models of Neurons

Linear neuron:

\[y=b+\sum\limits_i{x_i w_i} \]

Binary threshold neuron:

\[z = \sum\limits_i{x_i w_i} \]

\[y=\left\{\begin{aligned} 1,~~~~~~~z\gt \theta \\ 0,otherwise\end{aligned}\right. \]

也可以写作:

\[z = \sum\limits_i{x_i w_i} \]

\[y=\left\{\begin{aligned} 1,~~~~~~~z\gt 0 \\ 0, otherwise\end{aligned}\right. \]

Rectified linear neuron:

\[z=b+\sum\limits_i{x_i w_i} \]

\[y=\left\{\begin{aligned} 1,~~~~~~~z\gt 0 \\ 0, otherwise\end{aligned}\right. \]

Sigmoid neuron:

\[z=b+\sum\limits_i{x_i w_i} \]

\[y=\frac{1}{1+e^{-z}} \]

Stochastic binary neuron:

we treat the output of the logistic as the probability of producing \(s=1\).

\[z = \sum\limits_i{x_i w_i} \]

\[P(s=1)=\frac{1}{1+e^{-z}} \]

Note:

  1. \(x\): neuron input.
  2. \(w\): input weight matrix.
  3. \(b\): bias term.
  4. \(y\): neuron output .
posted @ 2016-05-13 13:29  姜楠  阅读(217)  评论(0编辑  收藏  举报