战狂粗人张

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::

一、es在数据量很大的情况下(数十亿级别)如何提高查询效率啊?

1、性能优化的杀手锏——filesystem cache

os cache,操作系统的缓存。

往es里写的数据,实际上都写到磁盘文件里去了,磁盘文件里的数据操作系统会自动将里面的数据缓存到os cache里面去。

es的搜索引擎严重依赖于底层的filesystem cache,你如果给filesystem cache更多的内存,尽量让内存可以容纳所有的indx segment file索引数据文件,那么搜索的时候就基本都是走内存的,性能会非常高。

性能差距可以有大,如果走磁盘一般肯定上秒,搜索性能绝对是秒级别的,1秒,5秒,10秒。但是如果是走filesystem cache,是走纯内存的,那么一般来说性能比走磁盘要高一个数量级,基本上就是毫秒级的,从几毫秒到几百毫秒不等。

 

真实案例:

比如说:es节点有3台机器,每台机器,看起来内存很多,64G,总内存,64 * 3 = 192g。

每台机器给es jvm heap是32G,那么剩下来留给filesystem cache的就是每台机器才32g,总共集群里给filesystem cache的就是32 * 3 = 96g内存。

如果此时磁盘上索引数据文件,在3台机器上,一共占用了1T的磁盘容量,你的es数据量是1t,每台机器的数据量是300g。

你觉得你的性能能好吗?filesystem cache的内存才100g,十分之一的数据可以放内存,其他的都在磁盘,然后你执行搜索操作,大部分操作都是走磁盘,性能肯定差。

当时他们的情况就是这样子,es在测试,弄了3台机器,自己觉得还不错,64G内存的物理机。自以为可以容纳1T的数据量。

归根结底,要让es性能要好,最佳的情况下,就是你的机器的内存,至少可以容纳你的总数据量的一半。

比如说,一共要在es中存储1T的数据,那么你的多台机器留个filesystem cache的内存加起来综合,至少要到512G,至少半数的情况下,搜索是走内存的,性能一般可以到几秒钟,2秒,3秒,5秒。

如果最佳的情况下,在生产环境实践经验,是仅仅在es中就存少量的数据,就是你要用来搜索的那些索引,内存留给filesystem cache的,就100G,那么你就控制在100gb以内,相当于是,你的数据几乎全部走内存来搜索,性能非常之高,一般可以在1秒以内。

比如说你现在有一行数据:

id name age ....30个字段

但是你现在搜索,只需要根据id name age三个字段来搜索。

如果你傻乎乎的往es里写入一行数据所有的字段,就会导致说70%的数据是不用来搜索的,结果硬是占据了es机器上的filesystem cache的空间,单挑数据的数据量越大,就会导致filesystem cahce能缓存的数据就越少。

仅仅只是写入es中要用来检索的少数几个字段就可以了,比如说,就写入es id name age三个字段就可以了,然后你可以把其他的字段数据存在mysql里面,我们一般是建议用es + hbase的这么一个架构。

hbase的特点是适用于海量数据的在线存储,就是对hbase可以写入海量数据,不要做复杂的搜索,就是做很简单的一些根据id或者范围进行查询的这么一个操作就可以了。

从es中根据name和age去搜索,拿到的结果可能就20个doc id,然后根据doc id到hbase里去查询每个doc id对应的完整的数据,给查出来,再返回给前端。

最好是写入es的数据小于等于,或者是略微大于es的filesystem cache的内存容量。

然后你从es检索可能就花费20ms,然后再根据es返回的id去hbase里查询,查20条数据,可能也就耗费个30ms,可能你原来那么玩儿,1T数据都放es,会每次查询都是5~10秒,现在可能性能就会很高,每次查询就是50ms。

elastcisearch减少数据量仅仅放要用于搜索的几个关键字段即可,尽量写入es的数据量跟es机器的filesystem cache是差不多的就可以了;其他不用来检索的数据放hbase里,或者mysql。

尽量在es里,就存储必须用来搜索的数据,比如说你现在有一份数据,有100个字段,其实用来搜索的只有10个字段,建议是将10个字段的数据,存入es,剩下90个字段的数据,可以放mysql,hadoop hbase,都可以。

这样的话,es数据量很少,10个字段的数据,都可以放内存,就用来搜索,搜索出来一些id,通过id去mysql,hbase里面去查询明细的数据。

 

2、数据预热

假如说,哪怕是你就按照上述的方案去做了,es集群中每个机器写入的数据量还是超过了filesystem cache一倍,比如说你写入一台机器60g数据,结果filesystem cache就30g,还是有30g数据留在了磁盘上。

举个例子:

就比如说,微博,你可以把一些大v,平时看的人很多的数据给提前你自己后台搞个系统,每隔一会儿,你自己的后台系统去搜索一下热数据,刷到filesystem cache里去,后面用户实际上来看这个热数据的时候,他们就是直接从内存里搜索了,很快。

电商,你可以将平时查看最多的一些商品,比如说iphone 8,热数据提前后台搞个程序,每隔1分钟自己主动访问一次,刷到filesystem cache里去。

对于那些你觉得比较热的,经常会有人访问的数据,最好做一个专门的缓存预热子系统,就是对热数据,每隔一段时间,你就提前访问一下,让数据进入filesystem cache里面去。这样期待下次别人访问的时候,一定性能会好一些。

 

3、冷热分离

关于es性能优化,数据拆分,将大量不搜索的字段,拆分到别的存储中去,这个就是类似于后面我最后要讲的mysql分库分表的垂直拆分。

es可以做类似于mysql的水平拆分,就是说将大量的访问很少,频率很低的数据,单独写一个索引,然后将访问很频繁的热数据单独写一个索引。

最好是将冷数据写入一个索引中,然后热数据写入另外一个索引中,这样可以确保热数据在被预热之后,尽量都让他们留在filesystem os cache里,别让冷数据给冲刷掉。

假设有6台机器,2个索引,一个放冷数据,一个放热数据,每个索引3个shard。3台机器放热数据index;另外3台机器放冷数据index。

然后这样的话,你大量的时候是在访问热数据index,热数据可能就占总数据量的10%,此时数据量很少,几乎全都保留在filesystem cache里面了,就可以确保热数据的访问性能是很高的。

但是对于冷数据而言,是在别的index里的,跟热数据index都不再相同的机器上,大家互相之间都没什么联系了。

如果有人访问冷数据,可能大量数据是在磁盘上的,此时性能差点,就10%的人去访问冷数据;90%的人在访问热数据。

 

4、document模型设计

mysql,有两张表

订单表:id order_code total_price

1 测试订单 5000

订单条目表:id order_id goods_id purchase_count price

1 1 1 2 2000

2 1 2 5 200

在mysql里,都是select * from order join order_item on order.id=order_item.order_id where order.id=1

1 测试订单 5000 1 1 1 2 2000

1 测试订单 5000 2 1 2 5 200

在es里该怎么玩儿,es里面的复杂的关联查询,复杂的查询语法,尽量别用,一旦用了性能一般都不太好。

设计es里的数据模型:

写入es的时候,搞成两个索引,order索引,orderItem索引

order索引,里面就包含id order_code total_price

orderItem索引,里面写入进去的时候,就完成join操作,id order_code total_price id order_id goods_id purchase_count price

写入es的java系统里,就完成关联,将关联好的数据直接写入es中,搜索的时候,就不需要利用es的搜索语法去完成join来搜索了。

document模型设计是非常重要的,很多操作,不要在搜索的时候才想去执行各种复杂的乱七八糟的操作。es能支持的操作就是那么多,不要考虑用es做一些它不好操作的事情。

如果真的有那种操作,尽量在document模型设计的时候,写入的时候就完成。另外对于一些太复杂的操作,比如join,nested,parent-child搜索都要尽量避免,性能都很差的。

很多复杂的乱七八糟的一些操作,如何执行

两个思路,在搜索/查询的时候,要执行一些业务强相关的特别复杂的操作:

(1)在写入数据的时候,就设计好模型,加几个字段,把处理好的数据写入加的字段里面;

(2)自己用java程序封装,es能做的,用es来做,搜索出来的数据,在java程序里面去做,比如说我们,基于es,用java封装一些特别复杂的操作。

 

5、分页性能优化

es的分页是较坑的,为啥呢?

举个例子:

假如你每页是10条数据,现在要查询第100页,实际上是会把每个shard上存储的前1000条数据都查到一个协调节点上,

如果你有个5个shard,那么就有5000条数据,接着协调节点对这5000条数据进行一些合并、处理,再获取到最终第100页的10条数据。

分布式的,你要查第100页的10条数据,你是不可能说从5个shard,每个shard就查2条数据?最后到协调节点合并成10条数据?

你必须得从每个shard都查1000条数据过来,然后根据你的需求进行排序、筛选等等操作,最后再次分页,拿到里面第100页的数据。

你翻页的时候,翻的越深,每个shard返回的数据就越多,而且协调节点处理的时间越长。非常坑爹。所以用es做分页的时候,你会发现越翻到后面,就越是慢。

我们之前也是遇到过这个问题,用es作分页,前几页就几十毫秒,翻到10页之后,几十页的时候,基本上就要5~10秒才能查出来一页数据了。

(1)不允许深度分页/默认深度分页性能很惨

你系统不允许他翻那么深的页,pm,默认翻的越深,性能就越差

(2)类似于app里的推荐商品不断下拉出来一页一页的

类似于微博中,下拉刷微博,刷出来一页一页的,可以用scroll api,scroll会一次性给你生成所有数据的一个快照,然后每次翻页就是通过游标移动,获取下一页下一页这样子,性能会比上面说的那种分页性能也高很多很多。

针对这个问题,你可以考虑用scroll来进行处理,scroll的原理实际上是保留一个数据快照,然后在一定时间内,你如果不断的滑动往后翻页的时候,类似于你现在在浏览微博,不断往下刷新翻页。

那么就用scroll不断通过游标获取下一页数据,这个性能是很高的,比es实际翻页要好的多的多。

但是唯一的一点就是,这个适合于那种类似微博下拉翻页的,不能随意跳到任何一页的场景。同时这个scroll是要保留一段时间内的数据快照的,你需要确保用户不会持续不断翻页翻几个小时。

无论翻多少页,性能基本上都是毫秒级的。

因为scroll api是只能一页一页往后翻的,是不能说,先进入第10页,然后去120页,回到58页,不能随意乱跳页。所以现在很多产品,都是不允许你随意翻页的,app,也有一些网站,做的就是你只能往下拉,一页一页的翻。

 

6、es生产集群的部署架构是什么?每个索引的数据量大概有多少?每个索引大概有多少个分片?

(1)es生产集群我们部署了5台机器,每台机器是6核64G的,集群总内存是320G;

(2)我们es集群的日增量数据大概是2000万条,每天日增量数据大概是500MB,每月增量数据大概是6亿,15G。目前系统已经运行了几个月,现在es集群里数据总量大概是100G左右。

(3)目前线上有5个索引(这个结合你们自己业务来,看看自己有哪些数据可以放es的),每个索引的数据量大概是20G,所以这个数据量之内,我们每个索引分配的是8个shard,比默认的5个shard多了3个shard。

 

二、Elasticsearch是如何实现Master选举的?

Elasticsearch的选主是ZenDiscovery模块负责的,主要包含Ping(节点之间通过这个RPC来发现彼此)和Unicast(单播模块包含一个主机列表以控制哪些节点需要ping通)这两部分;

对所有可以成为master的节点(node.master: true)根据nodeId字典排序,每次选举每个节点都把自己所知道节点排一次序,然后选出第一个(第0位)节点,暂且认为它是master节点。

如果对某个节点的投票数达到一定的值(可以成为master节点数n/2+1)并且该节点自己也选举自己,那这个节点就是master。否则重新选举一直到满足上述条件。

补充:master节点的职责主要包括集群、节点和索引的管理,不负责文档级别的管理;data节点可以关闭http功能。

 

三、Elasticsearch中的节点(比如共20个),其中的10个选了一个master,另外10个选了另一个master,怎么办?

当集群master候选数量不小于3个时,可以通过设置最少投票通过数量(discovery.zen.minimum_master_nodes)超过所有候选节点一半以上来解决脑裂问题;

当候选数量为两个时,只能修改为唯一的一个master候选,其他作为data节点,避免脑裂问题。

 

四、详细描述一下Elasticsearch索引文档的过程。

协调节点默认使用文档ID参与计算(也支持通过routing),以便为路由提供合适的分片。

shard = hash(document_id) % (num_of_primary_shards)

当分片所在的节点接收到来自协调节点的请求后,会将请求写入到Memory Buffer,然后定时(默认是每隔1秒)写入到Filesystem Cache,这个从Momery Buffer到Filesystem Cache的过程就叫做refresh;

当然在某些情况下,存在Momery Buffer和Filesystem Cache的数据可能会丢失,ES是通过translog的机制来保证数据的可靠性的。其实现机制是接收到请求后,同时也会写入到translog中,当Filesystem cache中的数据写入到磁盘中时,才会清除掉,这个过程叫做flush;

在flush过程中,内存中的缓冲将被清除,内容被写入一个新段,段的fsync将创建一个新的提交点,并将内容刷新到磁盘,旧的translog将被删除并开始一个新的translog。

flush触发的时机是定时触发(默认30分钟)或者translog变得太大(默认为512M)时。

 

五、Elasticsearch对于大数据量(上亿量级)的聚合如何实现?

Elasticsearch 提供的首个近似聚合是cardinality 度量。它提供一个字段的基数,即该字段的distinct或者unique值的数目。

它是基于HLL算法的。HLL 会先对我们的输入作哈希运算,然后根据哈希运算的结果中的 bits 做概率估算从而得到基数。

其特点是:可配置的精度,用来控制内存的使用(更精确 = 更多内存);小的数据集精度是非常高的;我们可以通过配置参数,来设置去重需要的固定内存使用量。

无论数千还是数十亿的唯一值,内存使用量只与你配置的精确度相关。

 

六、在并发情况下,Elasticsearch如果保证读写一致?

1、可以通过版本号使用乐观并发控制,以确保新版本不会被旧版本覆盖,由应用层来处理具体的冲突;

2、另外对于写操作,一致性级别支持quorum/one/all,默认为quorum,即只有当大多数分片可用时才允许写操作。但即使大多数可用,也可能存在因为网络等原因导致写入副本失败,这样该副本被认为故障,分片将会在一个不同的节点上重建。

3、对于读操作,可以设置replication为sync(默认),这使得操作在主分片和副本分片都完成后才会返回;如果设置replication为async时,也可以通过设置搜索请求参数_preference为primary来查询主分片,确保文档是最新版本。

 

七、介绍一下电商搜索的整体技术架构。

 

 

八、elasticsearch的一些调优手段 。

1、设计阶段调优

(1)根据业务增量需求,采取基于日期模板创建索引,通过roll over API滚动索引;

(2)使用别名进行索引管理;

(3)每天凌晨定时对索引做force_merge操作,以释放空间;

(4)采取冷热分离机制,热数据存储到SSD,提高检索效率;冷数据定期进行shrink操作,以缩减存储;

(5)采取curator进行索引的生命周期管理;

(6)仅针对需要分词的字段,合理的设置分词器;

(7)Mapping阶段充分结合各个字段的属性,是否需要检索、是否需要存储等。 …

2、写入调优

(1)写入前副本数设置为0;

(2)写入前关闭refresh_interval设置为-1,禁用刷新机制;

(3)写入过程中:采取bulk批量写入;

(4)写入后恢复副本数和刷新间隔;

(5)尽量使用自动生成的id。

3、查询调优

(1)禁用wildcard;

(2)禁用批量terms(成百上千的场景);

(3)充分利用倒排索引机制,能keyword类型尽量keyword;

(4)数据量大时候,可以先基于时间敲定索引再检索;

(5)设置合理的路由机制。

 

posted on 2021-05-13 10:18  战狂粗人张  阅读(223)  评论(0编辑  收藏  举报