回归模型与房价预测
from sklearn.datasets import load_boston boston=load_boston() boston.keys() print(boston.DESCR) data=boston.data x=data[:,5] y=boston.target import matplotlib.pyplot as plt plt.scatter(x,y) plt.plot(x,9*x-30) plt.show()
from sklearn .linear_model import LinearRegression LineR=LinearRegression() LineR.fit(x.reshape(-1,1),y) w=LineR.coef_ b=LineR.intercept_ print(w,b) import matplotlib.pyplot as plt plt.scatter(x,y) plt.plot(x,w*x+b,'r') plt.show()
data=boston.data x=data[:,5] y=boston.target import matplotlib.pyplot as plt plt.scatter(x,y) plt.plot(x,w*x+b) plt.show()
from sklearn.linear_model import LinearRegression LineR=LinearRegression() LineR.fit(x.reshape(-1,1),y) w=LineR.coef_ b=LineR.intercept_ import matplotlib.pyplot as plt x=boston.data[:,12].reshape(-1,1) y=boston.target plt.figure(figsize=(10,6)) plt.scatter(x,y)
from sklearn.linear_model import LinearRegression lineR=LinearRegression() lineR.fit(x,y) y_pred=lineR.predict(x) plt.plot(x,y_pred,'green') print(w,b) plt.show()
from sklearn.linear_model import LinearRegression LineR=LinearRegression() LineR.fit(x.reshape(-1,1),y) w=LineR.coef_ b=LineR.intercept_ print(w,b) import matplotlib.pyplot as plt plt.scatter(x,y) plt.plot(x,w*x+b,'r') plt.show()
from sklearn.preprocessing import PolynomialFeatures poly=PolynomialFeatures(degree=2) x_poly=poly.fit_transform(x) lrp=LinearRegression() lrp.fit(x_poly,y) y_ploy_pred=lrp.predict(x_poly) plt.scatter(x,y) plt.plot(x,y_ploy_pred,'r') plt.show() from sklearn.preprocessing import PolynomialFeatures poly=PolynomialFeatures(degree=2) x_poly=poly.fit_transform(x) lrp=LinearRegression() lrp.fit(x_poly,y) plt.scatter(x,y) plt.scatter(x,y_pred) plt.scatter(x,y_ploy_pred) plt.show()