第二十讲:迭代模式
容器类的职责太多了.
Iterator迭代接口,JDK里面其实也提供了一个迭代接口.JDK里面已经很好地实现了这个迭代模式.
/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.util; /** * An iterator over a collection. {@code Iterator} takes the place of * {@link Enumeration} in the Java Collections Framework. Iterators * differ from enumerations in two ways: * * <ul> * <li> Iterators allow the caller to remove elements from the * underlying collection during the iteration with well-defined * semantics. * <li> Method names have been improved. * </ul> * * <p>This interface is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @param <E> the type of elements returned by this iterator * * @author Josh Bloch * @see Collection * @see ListIterator * @see Iterable * @since 1.2 */ public interface Iterator<E> { /** * Returns {@code true} if the iteration has more elements. * (In other words, returns {@code true} if {@link #next} would * return an element rather than throwing an exception.) * * @return {@code true} if the iteration has more elements */ boolean hasNext(); /** * Returns the next element in the iteration. * * @return the next element in the iteration * @throws NoSuchElementException if the iteration has no more elements */ E next(); /** * Removes from the underlying collection the last element returned * by this iterator (optional operation). This method can be called * only once per call to {@link #next}. The behavior of an iterator * is unspecified if the underlying collection is modified while the * iteration is in progress in any way other than by calling this * method. * * @throws UnsupportedOperationException if the {@code remove} * operation is not supported by this iterator * * @throws IllegalStateException if the {@code next} method has not * yet been called, or the {@code remove} method has already * been called after the last call to the {@code next} * method */ void remove(); }
ConcreteIterator:迭代器的具体实现类,这个实现细节已经被JDK隐藏了(如果你没有很好地研究过JDK的话是不知道这个迭代器的实现类的.).
/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.util; /** * The root interface in the <i>collection hierarchy</i>. A collection * represents a group of objects, known as its <i>elements</i>. Some * collections allow duplicate elements and others do not. Some are ordered * and others unordered. The JDK does not provide any <i>direct</i> * implementations of this interface: it provides implementations of more * specific subinterfaces like <tt>Set</tt> and <tt>List</tt>. This interface * is typically used to pass collections around and manipulate them where * maximum generality is desired. * * <p><i>Bags</i> or <i>multisets</i> (unordered collections that may contain * duplicate elements) should implement this interface directly. * * <p>All general-purpose <tt>Collection</tt> implementation classes (which * typically implement <tt>Collection</tt> indirectly through one of its * subinterfaces) should provide two "standard" constructors: a void (no * arguments) constructor, which creates an empty collection, and a * constructor with a single argument of type <tt>Collection</tt>, which * creates a new collection with the same elements as its argument. In * effect, the latter constructor allows the user to copy any collection, * producing an equivalent collection of the desired implementation type. * There is no way to enforce this convention (as interfaces cannot contain * constructors) but all of the general-purpose <tt>Collection</tt> * implementations in the Java platform libraries comply. * * <p>The "destructive" methods contained in this interface, that is, the * methods that modify the collection on which they operate, are specified to * throw <tt>UnsupportedOperationException</tt> if this collection does not * support the operation. If this is the case, these methods may, but are not * required to, throw an <tt>UnsupportedOperationException</tt> if the * invocation would have no effect on the collection. For example, invoking * the {@link #addAll(Collection)} method on an unmodifiable collection may, * but is not required to, throw the exception if the collection to be added * is empty. * * <p><a name="optional-restrictions"/> * Some collection implementations have restrictions on the elements that * they may contain. For example, some implementations prohibit null elements, * and some have restrictions on the types of their elements. Attempting to * add an ineligible element throws an unchecked exception, typically * <tt>NullPointerException</tt> or <tt>ClassCastException</tt>. Attempting * to query the presence of an ineligible element may throw an exception, * or it may simply return false; some implementations will exhibit the former * behavior and some will exhibit the latter. More generally, attempting an * operation on an ineligible element whose completion would not result in * the insertion of an ineligible element into the collection may throw an * exception or it may succeed, at the option of the implementation. * Such exceptions are marked as "optional" in the specification for this * interface. * * <p>It is up to each collection to determine its own synchronization * policy. In the absence of a stronger guarantee by the * implementation, undefined behavior may result from the invocation * of any method on a collection that is being mutated by another * thread; this includes direct invocations, passing the collection to * a method that might perform invocations, and using an existing * iterator to examine the collection. * * <p>Many methods in Collections Framework interfaces are defined in * terms of the {@link Object#equals(Object) equals} method. For example, * the specification for the {@link #contains(Object) contains(Object o)} * method says: "returns <tt>true</tt> if and only if this collection * contains at least one element <tt>e</tt> such that * <tt>(o==null ? e==null : o.equals(e))</tt>." This specification should * <i>not</i> be construed to imply that invoking <tt>Collection.contains</tt> * with a non-null argument <tt>o</tt> will cause <tt>o.equals(e)</tt> to be * invoked for any element <tt>e</tt>. Implementations are free to implement * optimizations whereby the <tt>equals</tt> invocation is avoided, for * example, by first comparing the hash codes of the two elements. (The * {@link Object#hashCode()} specification guarantees that two objects with * unequal hash codes cannot be equal.) More generally, implementations of * the various Collections Framework interfaces are free to take advantage of * the specified behavior of underlying {@link Object} methods wherever the * implementor deems it appropriate. * * <p>This interface is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @param <E> the type of elements in this collection * * @author Josh Bloch * @author Neal Gafter * @see Set * @see List * @see Map * @see SortedSet * @see SortedMap * @see HashSet * @see TreeSet * @see ArrayList * @see LinkedList * @see Vector * @see Collections * @see Arrays * @see AbstractCollection * @since 1.2 */ public interface Collection<E> extends Iterable<E> { // Query Operations /** * Returns the number of elements in this collection. If this collection * contains more than <tt>Integer.MAX_VALUE</tt> elements, returns * <tt>Integer.MAX_VALUE</tt>. * * @return the number of elements in this collection */ int size(); /** * Returns <tt>true</tt> if this collection contains no elements. * * @return <tt>true</tt> if this collection contains no elements */ boolean isEmpty(); /** * Returns <tt>true</tt> if this collection contains the specified element. * More formally, returns <tt>true</tt> if and only if this collection * contains at least one element <tt>e</tt> such that * <tt>(o==null ? e==null : o.equals(e))</tt>. * * @param o element whose presence in this collection is to be tested * @return <tt>true</tt> if this collection contains the specified * element * @throws ClassCastException if the type of the specified element * is incompatible with this collection * (<a href="#optional-restrictions">optional</a>) * @throws NullPointerException if the specified element is null and this * collection does not permit null elements * (<a href="#optional-restrictions">optional</a>) */ boolean contains(Object o); /** * Returns an iterator over the elements in this collection. There are no * guarantees concerning the order in which the elements are returned * (unless this collection is an instance of some class that provides a * guarantee). * * @return an <tt>Iterator</tt> over the elements in this collection */ Iterator<E> iterator(); /** * Returns an array containing all of the elements in this collection. * If this collection makes any guarantees as to what order its elements * are returned by its iterator, this method must return the elements in * the same order. * * <p>The returned array will be "safe" in that no references to it are * maintained by this collection. (In other words, this method must * allocate a new array even if this collection is backed by an array). * The caller is thus free to modify the returned array. * * <p>This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this collection */ Object[] toArray(); /** * Returns an array containing all of the elements in this collection; * the runtime type of the returned array is that of the specified array. * If the collection fits in the specified array, it is returned therein. * Otherwise, a new array is allocated with the runtime type of the * specified array and the size of this collection. * * <p>If this collection fits in the specified array with room to spare * (i.e., the array has more elements than this collection), the element * in the array immediately following the end of the collection is set to * <tt>null</tt>. (This is useful in determining the length of this * collection <i>only</i> if the caller knows that this collection does * not contain any <tt>null</tt> elements.) * * <p>If this collection makes any guarantees as to what order its elements * are returned by its iterator, this method must return the elements in * the same order. * * <p>Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * * <p>Suppose <tt>x</tt> is a collection known to contain only strings. * The following code can be used to dump the collection into a newly * allocated array of <tt>String</tt>: * * <pre> * String[] y = x.toArray(new String[0]);</pre> * * Note that <tt>toArray(new Object[0])</tt> is identical in function to * <tt>toArray()</tt>. * * @param a the array into which the elements of this collection are to be * stored, if it is big enough; otherwise, a new array of the same * runtime type is allocated for this purpose. * @return an array containing all of the elements in this collection * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this collection * @throws NullPointerException if the specified array is null */ <T> T[] toArray(T[] a); // Modification Operations /** * Ensures that this collection contains the specified element (optional * operation). Returns <tt>true</tt> if this collection changed as a * result of the call. (Returns <tt>false</tt> if this collection does * not permit duplicates and already contains the specified element.)<p> * * Collections that support this operation may place limitations on what * elements may be added to this collection. In particular, some * collections will refuse to add <tt>null</tt> elements, and others will * impose restrictions on the type of elements that may be added. * Collection classes should clearly specify in their documentation any * restrictions on what elements may be added.<p> * * If a collection refuses to add a particular element for any reason * other than that it already contains the element, it <i>must</i> throw * an exception (rather than returning <tt>false</tt>). This preserves * the invariant that a collection always contains the specified element * after this call returns. * * @param e element whose presence in this collection is to be ensured * @return <tt>true</tt> if this collection changed as a result of the * call * @throws UnsupportedOperationException if the <tt>add</tt> operation * is not supported by this collection * @throws ClassCastException if the class of the specified element * prevents it from being added to this collection * @throws NullPointerException if the specified element is null and this * collection does not permit null elements * @throws IllegalArgumentException if some property of the element * prevents it from being added to this collection * @throws IllegalStateException if the element cannot be added at this * time due to insertion restrictions */ boolean add(E e); /** * Removes a single instance of the specified element from this * collection, if it is present (optional operation). More formally, * removes an element <tt>e</tt> such that * <tt>(o==null ? e==null : o.equals(e))</tt>, if * this collection contains one or more such elements. Returns * <tt>true</tt> if this collection contained the specified element (or * equivalently, if this collection changed as a result of the call). * * @param o element to be removed from this collection, if present * @return <tt>true</tt> if an element was removed as a result of this call * @throws ClassCastException if the type of the specified element * is incompatible with this collection * (<a href="#optional-restrictions">optional</a>) * @throws NullPointerException if the specified element is null and this * collection does not permit null elements * (<a href="#optional-restrictions">optional</a>) * @throws UnsupportedOperationException if the <tt>remove</tt> operation * is not supported by this collection */ boolean remove(Object o); // Bulk Operations /** * Returns <tt>true</tt> if this collection contains all of the elements * in the specified collection. * * @param c collection to be checked for containment in this collection * @return <tt>true</tt> if this collection contains all of the elements * in the specified collection * @throws ClassCastException if the types of one or more elements * in the specified collection are incompatible with this * collection * (<a href="#optional-restrictions">optional</a>) * @throws NullPointerException if the specified collection contains one * or more null elements and this collection does not permit null * elements * (<a href="#optional-restrictions">optional</a>), * or if the specified collection is null. * @see #contains(Object) */ boolean containsAll(Collection<?> c); /** * Adds all of the elements in the specified collection to this collection * (optional operation). The behavior of this operation is undefined if * the specified collection is modified while the operation is in progress. * (This implies that the behavior of this call is undefined if the * specified collection is this collection, and this collection is * nonempty.) * * @param c collection containing elements to be added to this collection * @return <tt>true</tt> if this collection changed as a result of the call * @throws UnsupportedOperationException if the <tt>addAll</tt> operation * is not supported by this collection * @throws ClassCastException if the class of an element of the specified * collection prevents it from being added to this collection * @throws NullPointerException if the specified collection contains a * null element and this collection does not permit null elements, * or if the specified collection is null * @throws IllegalArgumentException if some property of an element of the * specified collection prevents it from being added to this * collection * @throws IllegalStateException if not all the elements can be added at * this time due to insertion restrictions * @see #add(Object) */ boolean addAll(Collection<? extends E> c); /** * Removes all of this collection's elements that are also contained in the * specified collection (optional operation). After this call returns, * this collection will contain no elements in common with the specified * collection. * * @param c collection containing elements to be removed from this collection * @return <tt>true</tt> if this collection changed as a result of the * call * @throws UnsupportedOperationException if the <tt>removeAll</tt> method * is not supported by this collection * @throws ClassCastException if the types of one or more elements * in this collection are incompatible with the specified * collection * (<a href="#optional-restrictions">optional</a>) * @throws NullPointerException if this collection contains one or more * null elements and the specified collection does not support * null elements * (<a href="#optional-restrictions">optional</a>), * or if the specified collection is null * @see #remove(Object) * @see #contains(Object) */ boolean removeAll(Collection<?> c); /** * Retains only the elements in this collection that are contained in the * specified collection (optional operation). In other words, removes from * this collection all of its elements that are not contained in the * specified collection. * * @param c collection containing elements to be retained in this collection * @return <tt>true</tt> if this collection changed as a result of the call * @throws UnsupportedOperationException if the <tt>retainAll</tt> operation * is not supported by this collection * @throws ClassCastException if the types of one or more elements * in this collection are incompatible with the specified * collection * (<a href="#optional-restrictions">optional</a>) * @throws NullPointerException if this collection contains one or more * null elements and the specified collection does not permit null * elements * (<a href="#optional-restrictions">optional</a>), * or if the specified collection is null * @see #remove(Object) * @see #contains(Object) */ boolean retainAll(Collection<?> c); /** * Removes all of the elements from this collection (optional operation). * The collection will be empty after this method returns. * * @throws UnsupportedOperationException if the <tt>clear</tt> operation * is not supported by this collection */ void clear(); // Comparison and hashing /** * Compares the specified object with this collection for equality. <p> * * While the <tt>Collection</tt> interface adds no stipulations to the * general contract for the <tt>Object.equals</tt>, programmers who * implement the <tt>Collection</tt> interface "directly" (in other words, * create a class that is a <tt>Collection</tt> but is not a <tt>Set</tt> * or a <tt>List</tt>) must exercise care if they choose to override the * <tt>Object.equals</tt>. It is not necessary to do so, and the simplest * course of action is to rely on <tt>Object</tt>'s implementation, but * the implementor may wish to implement a "value comparison" in place of * the default "reference comparison." (The <tt>List</tt> and * <tt>Set</tt> interfaces mandate such value comparisons.)<p> * * The general contract for the <tt>Object.equals</tt> method states that * equals must be symmetric (in other words, <tt>a.equals(b)</tt> if and * only if <tt>b.equals(a)</tt>). The contracts for <tt>List.equals</tt> * and <tt>Set.equals</tt> state that lists are only equal to other lists, * and sets to other sets. Thus, a custom <tt>equals</tt> method for a * collection class that implements neither the <tt>List</tt> nor * <tt>Set</tt> interface must return <tt>false</tt> when this collection * is compared to any list or set. (By the same logic, it is not possible * to write a class that correctly implements both the <tt>Set</tt> and * <tt>List</tt> interfaces.) * * @param o object to be compared for equality with this collection * @return <tt>true</tt> if the specified object is equal to this * collection * * @see Object#equals(Object) * @see Set#equals(Object) * @see List#equals(Object) */ boolean equals(Object o); /** * Returns the hash code value for this collection. While the * <tt>Collection</tt> interface adds no stipulations to the general * contract for the <tt>Object.hashCode</tt> method, programmers should * take note that any class that overrides the <tt>Object.equals</tt> * method must also override the <tt>Object.hashCode</tt> method in order * to satisfy the general contract for the <tt>Object.hashCode</tt> method. * In particular, <tt>c1.equals(c2)</tt> implies that * <tt>c1.hashCode()==c2.hashCode()</tt>. * * @return the hash code value for this collection * * @see Object#hashCode() * @see Object#equals(Object) */ int hashCode(); }
Collection:容器接口实现了Iterator接口,表示它可以实现迭代.Iterator的实现类我们是不知道的.Iterator的实现细节是隐藏的很深的.
/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ package java.util; /** * This class provides a skeletal implementation of the {@link List} * interface to minimize the effort required to implement this interface * backed by a "random access" data store (such as an array). For sequential * access data (such as a linked list), {@link AbstractSequentialList} should * be used in preference to this class. * * <p>To implement an unmodifiable list, the programmer needs only to extend * this class and provide implementations for the {@link #get(int)} and * {@link List#size() size()} methods. * * <p>To implement a modifiable list, the programmer must additionally * override the {@link #set(int, Object) set(int, E)} method (which otherwise * throws an {@code UnsupportedOperationException}). If the list is * variable-size the programmer must additionally override the * {@link #add(int, Object) add(int, E)} and {@link #remove(int)} methods. * * <p>The programmer should generally provide a void (no argument) and collection * constructor, as per the recommendation in the {@link Collection} interface * specification. * * <p>Unlike the other abstract collection implementations, the programmer does * <i>not</i> have to provide an iterator implementation; the iterator and * list iterator are implemented by this class, on top of the "random access" * methods: * {@link #get(int)}, * {@link #set(int, Object) set(int, E)}, * {@link #add(int, Object) add(int, E)} and * {@link #remove(int)}. * * <p>The documentation for each non-abstract method in this class describes its * implementation in detail. Each of these methods may be overridden if the * collection being implemented admits a more efficient implementation. * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @author Josh Bloch * @author Neal Gafter * @since 1.2 */ public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> { /** * Sole constructor. (For invocation by subclass constructors, typically * implicit.) */ protected AbstractList() { } /** * Appends the specified element to the end of this list (optional * operation). * * <p>Lists that support this operation may place limitations on what * elements may be added to this list. In particular, some * lists will refuse to add null elements, and others will impose * restrictions on the type of elements that may be added. List * classes should clearly specify in their documentation any restrictions * on what elements may be added. * * <p>This implementation calls {@code add(size(), e)}. * * <p>Note that this implementation throws an * {@code UnsupportedOperationException} unless * {@link #add(int, Object) add(int, E)} is overridden. * * @param e element to be appended to this list * @return {@code true} (as specified by {@link Collection#add}) * @throws UnsupportedOperationException if the {@code add} operation * is not supported by this list * @throws ClassCastException if the class of the specified element * prevents it from being added to this list * @throws NullPointerException if the specified element is null and this * list does not permit null elements * @throws IllegalArgumentException if some property of this element * prevents it from being added to this list */ public boolean add(E e) { add(size(), e); return true; } /** * {@inheritDoc} * * @throws IndexOutOfBoundsException {@inheritDoc} */ abstract public E get(int index); /** * {@inheritDoc} * * <p>This implementation always throws an * {@code UnsupportedOperationException}. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} * @throws IndexOutOfBoundsException {@inheritDoc} */ public E set(int index, E element) { throw new UnsupportedOperationException(); } /** * {@inheritDoc} * * <p>This implementation always throws an * {@code UnsupportedOperationException}. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} * @throws IndexOutOfBoundsException {@inheritDoc} */ public void add(int index, E element) { throw new UnsupportedOperationException(); } /** * {@inheritDoc} * * <p>This implementation always throws an * {@code UnsupportedOperationException}. * * @throws UnsupportedOperationException {@inheritDoc} * @throws IndexOutOfBoundsException {@inheritDoc} */ public E remove(int index) { throw new UnsupportedOperationException(); } // Search Operations /** * {@inheritDoc} * * <p>This implementation first gets a list iterator (with * {@code listIterator()}). Then, it iterates over the list until the * specified element is found or the end of the list is reached. * * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public int indexOf(Object o) { ListIterator<E> it = listIterator(); if (o==null) { while (it.hasNext()) if (it.next()==null) return it.previousIndex(); } else { while (it.hasNext()) if (o.equals(it.next())) return it.previousIndex(); } return -1; } /** * {@inheritDoc} * * <p>This implementation first gets a list iterator that points to the end * of the list (with {@code listIterator(size())}). Then, it iterates * backwards over the list until the specified element is found, or the * beginning of the list is reached. * * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public int lastIndexOf(Object o) { ListIterator<E> it = listIterator(size()); if (o==null) { while (it.hasPrevious()) if (it.previous()==null) return it.nextIndex(); } else { while (it.hasPrevious()) if (o.equals(it.previous())) return it.nextIndex(); } return -1; } // Bulk Operations /** * Removes all of the elements from this list (optional operation). * The list will be empty after this call returns. * * <p>This implementation calls {@code removeRange(0, size())}. * * <p>Note that this implementation throws an * {@code UnsupportedOperationException} unless {@code remove(int * index)} or {@code removeRange(int fromIndex, int toIndex)} is * overridden. * * @throws UnsupportedOperationException if the {@code clear} operation * is not supported by this list */ public void clear() { removeRange(0, size()); } /** * {@inheritDoc} * * <p>This implementation gets an iterator over the specified collection * and iterates over it, inserting the elements obtained from the * iterator into this list at the appropriate position, one at a time, * using {@code add(int, E)}. * Many implementations will override this method for efficiency. * * <p>Note that this implementation throws an * {@code UnsupportedOperationException} unless * {@link #add(int, Object) add(int, E)} is overridden. * * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} * @throws IndexOutOfBoundsException {@inheritDoc} */ public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); boolean modified = false; for (E e : c) { add(index++, e); modified = true; } return modified; } // Iterators /** * Returns an iterator over the elements in this list in proper sequence. * * <p>This implementation returns a straightforward implementation of the * iterator interface, relying on the backing list's {@code size()}, * {@code get(int)}, and {@code remove(int)} methods. * * <p>Note that the iterator returned by this method will throw an * {@link UnsupportedOperationException} in response to its * {@code remove} method unless the list's {@code remove(int)} method is * overridden. * * <p>This implementation can be made to throw runtime exceptions in the * face of concurrent modification, as described in the specification * for the (protected) {@link #modCount} field. * * @return an iterator over the elements in this list in proper sequence */ public Iterator<E> iterator() { return new Itr(); } /** * {@inheritDoc} * * <p>This implementation returns {@code listIterator(0)}. * * @see #listIterator(int) */ public ListIterator<E> listIterator() { return listIterator(0); } /** * {@inheritDoc} * * <p>This implementation returns a straightforward implementation of the * {@code ListIterator} interface that extends the implementation of the * {@code Iterator} interface returned by the {@code iterator()} method. * The {@code ListIterator} implementation relies on the backing list's * {@code get(int)}, {@code set(int, E)}, {@code add(int, E)} * and {@code remove(int)} methods. * * <p>Note that the list iterator returned by this implementation will * throw an {@link UnsupportedOperationException} in response to its * {@code remove}, {@code set} and {@code add} methods unless the * list's {@code remove(int)}, {@code set(int, E)}, and * {@code add(int, E)} methods are overridden. * * <p>This implementation can be made to throw runtime exceptions in the * face of concurrent modification, as described in the specification for * the (protected) {@link #modCount} field. * * @throws IndexOutOfBoundsException {@inheritDoc} */ public ListIterator<E> listIterator(final int index) { rangeCheckForAdd(index); return new ListItr(index); } private class Itr implements Iterator<E> { /** * Index of element to be returned by subsequent call to next. */ int cursor = 0; /** * Index of element returned by most recent call to next or * previous. Reset to -1 if this element is deleted by a call * to remove. */ int lastRet = -1; /** * The modCount value that the iterator believes that the backing * List should have. If this expectation is violated, the iterator * has detected concurrent modification. */ int expectedModCount = modCount; public boolean hasNext() { return cursor != size(); } public E next() { checkForComodification(); try { int i = cursor; E next = get(i); lastRet = i; cursor = i + 1; return next; } catch (IndexOutOfBoundsException e) { checkForComodification(); throw new NoSuchElementException(); } } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { AbstractList.this.remove(lastRet); if (lastRet < cursor) cursor--; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException e) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } private class ListItr extends Itr implements ListIterator<E> { ListItr(int index) { cursor = index; } public boolean hasPrevious() { return cursor != 0; } public E previous() { checkForComodification(); try { int i = cursor - 1; E previous = get(i); lastRet = cursor = i; return previous; } catch (IndexOutOfBoundsException e) { checkForComodification(); throw new NoSuchElementException(); } } public int nextIndex() { return cursor; } public int previousIndex() { return cursor-1; } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { AbstractList.this.set(lastRet, e); expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; AbstractList.this.add(i, e); lastRet = -1; cursor = i + 1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } } /** * {@inheritDoc} * * <p>This implementation returns a list that subclasses * {@code AbstractList}. The subclass stores, in private fields, the * offset of the subList within the backing list, the size of the subList * (which can change over its lifetime), and the expected * {@code modCount} value of the backing list. There are two variants * of the subclass, one of which implements {@code RandomAccess}. * If this list implements {@code RandomAccess} the returned list will * be an instance of the subclass that implements {@code RandomAccess}. * * <p>The subclass's {@code set(int, E)}, {@code get(int)}, * {@code add(int, E)}, {@code remove(int)}, {@code addAll(int, * Collection)} and {@code removeRange(int, int)} methods all * delegate to the corresponding methods on the backing abstract list, * after bounds-checking the index and adjusting for the offset. The * {@code addAll(Collection c)} method merely returns {@code addAll(size, * c)}. * * <p>The {@code listIterator(int)} method returns a "wrapper object" * over a list iterator on the backing list, which is created with the * corresponding method on the backing list. The {@code iterator} method * merely returns {@code listIterator()}, and the {@code size} method * merely returns the subclass's {@code size} field. * * <p>All methods first check to see if the actual {@code modCount} of * the backing list is equal to its expected value, and throw a * {@code ConcurrentModificationException} if it is not. * * @throws IndexOutOfBoundsException if an endpoint index value is out of range * {@code (fromIndex < 0 || toIndex > size)} * @throws IllegalArgumentException if the endpoint indices are out of order * {@code (fromIndex > toIndex)} */ public List<E> subList(int fromIndex, int toIndex) { return (this instanceof RandomAccess ? new RandomAccessSubList<>(this, fromIndex, toIndex) : new SubList<>(this, fromIndex, toIndex)); } // Comparison and hashing /** * Compares the specified object with this list for equality. Returns * {@code true} if and only if the specified object is also a list, both * lists have the same size, and all corresponding pairs of elements in * the two lists are <i>equal</i>. (Two elements {@code e1} and * {@code e2} are <i>equal</i> if {@code (e1==null ? e2==null : * e1.equals(e2))}.) In other words, two lists are defined to be * equal if they contain the same elements in the same order.<p> * * This implementation first checks if the specified object is this * list. If so, it returns {@code true}; if not, it checks if the * specified object is a list. If not, it returns {@code false}; if so, * it iterates over both lists, comparing corresponding pairs of elements. * If any comparison returns {@code false}, this method returns * {@code false}. If either iterator runs out of elements before the * other it returns {@code false} (as the lists are of unequal length); * otherwise it returns {@code true} when the iterations complete. * * @param o the object to be compared for equality with this list * @return {@code true} if the specified object is equal to this list */ public boolean equals(Object o) { if (o == this) return true; if (!(o instanceof List)) return false; ListIterator<E> e1 = listIterator(); ListIterator e2 = ((List) o).listIterator(); while (e1.hasNext() && e2.hasNext()) { E o1 = e1.next(); Object o2 = e2.next(); if (!(o1==null ? o2==null : o1.equals(o2))) return false; } return !(e1.hasNext() || e2.hasNext()); } /** * Returns the hash code value for this list. * * <p>This implementation uses exactly the code that is used to define the * list hash function in the documentation for the {@link List#hashCode} * method. * * @return the hash code value for this list */ public int hashCode() { int hashCode = 1; for (E e : this) hashCode = 31*hashCode + (e==null ? 0 : e.hashCode()); return hashCode; } /** * Removes from this list all of the elements whose index is between * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. * Shifts any succeeding elements to the left (reduces their index). * This call shortens the list by {@code (toIndex - fromIndex)} elements. * (If {@code toIndex==fromIndex}, this operation has no effect.) * * <p>This method is called by the {@code clear} operation on this list * and its subLists. Overriding this method to take advantage of * the internals of the list implementation can <i>substantially</i> * improve the performance of the {@code clear} operation on this list * and its subLists. * * <p>This implementation gets a list iterator positioned before * {@code fromIndex}, and repeatedly calls {@code ListIterator.next} * followed by {@code ListIterator.remove} until the entire range has * been removed. <b>Note: if {@code ListIterator.remove} requires linear * time, this implementation requires quadratic time.</b> * * @param fromIndex index of first element to be removed * @param toIndex index after last element to be removed */ protected void removeRange(int fromIndex, int toIndex) { ListIterator<E> it = listIterator(fromIndex); for (int i=0, n=toIndex-fromIndex; i<n; i++) { it.next(); it.remove(); } } /** * The number of times this list has been <i>structurally modified</i>. * Structural modifications are those that change the size of the * list, or otherwise perturb it in such a fashion that iterations in * progress may yield incorrect results. * * <p>This field is used by the iterator and list iterator implementation * returned by the {@code iterator} and {@code listIterator} methods. * If the value of this field changes unexpectedly, the iterator (or list * iterator) will throw a {@code ConcurrentModificationException} in * response to the {@code next}, {@code remove}, {@code previous}, * {@code set} or {@code add} operations. This provides * <i>fail-fast</i> behavior, rather than non-deterministic behavior in * the face of concurrent modification during iteration. * * <p><b>Use of this field by subclasses is optional.</b> If a subclass * wishes to provide fail-fast iterators (and list iterators), then it * merely has to increment this field in its {@code add(int, E)} and * {@code remove(int)} methods (and any other methods that it overrides * that result in structural modifications to the list). A single call to * {@code add(int, E)} or {@code remove(int)} must add no more than * one to this field, or the iterators (and list iterators) will throw * bogus {@code ConcurrentModificationExceptions}. If an implementation * does not wish to provide fail-fast iterators, this field may be * ignored. */ protected transient int modCount = 0; private void rangeCheckForAdd(int index) { if (index < 0 || index > size()) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size(); } } class SubList<E> extends AbstractList<E> { private final AbstractList<E> l; private final int offset; private int size; SubList(AbstractList<E> list, int fromIndex, int toIndex) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); if (toIndex > list.size()) throw new IndexOutOfBoundsException("toIndex = " + toIndex); if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); l = list; offset = fromIndex; size = toIndex - fromIndex; this.modCount = l.modCount; } public E set(int index, E element) { rangeCheck(index); checkForComodification(); return l.set(index+offset, element); } public E get(int index) { rangeCheck(index); checkForComodification(); return l.get(index+offset); } public int size() { checkForComodification(); return size; } public void add(int index, E element) { rangeCheckForAdd(index); checkForComodification(); l.add(index+offset, element); this.modCount = l.modCount; size++; } public E remove(int index) { rangeCheck(index); checkForComodification(); E result = l.remove(index+offset); this.modCount = l.modCount; size--; return result; } protected void removeRange(int fromIndex, int toIndex) { checkForComodification(); l.removeRange(fromIndex+offset, toIndex+offset); this.modCount = l.modCount; size -= (toIndex-fromIndex); } public boolean addAll(Collection<? extends E> c) { return addAll(size, c); } public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); int cSize = c.size(); if (cSize==0) return false; checkForComodification(); l.addAll(offset+index, c); this.modCount = l.modCount; size += cSize; return true; } public Iterator<E> iterator() { return listIterator(); } public ListIterator<E> listIterator(final int index) { checkForComodification(); rangeCheckForAdd(index); return new ListIterator<E>() { private final ListIterator<E> i = l.listIterator(index+offset); public boolean hasNext() { return nextIndex() < size; } public E next() { if (hasNext()) return i.next(); else throw new NoSuchElementException(); } public boolean hasPrevious() { return previousIndex() >= 0; } public E previous() { if (hasPrevious()) return i.previous(); else throw new NoSuchElementException(); } public int nextIndex() { return i.nextIndex() - offset; } public int previousIndex() { return i.previousIndex() - offset; } public void remove() { i.remove(); SubList.this.modCount = l.modCount; size--; } public void set(E e) { i.set(e); } public void add(E e) { i.add(e); SubList.this.modCount = l.modCount; size++; } }; } public List<E> subList(int fromIndex, int toIndex) { return new SubList<>(this, fromIndex, toIndex); } private void rangeCheck(int index) { if (index < 0 || index >= size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void rangeCheckForAdd(int index) { if (index < 0 || index > size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } private void checkForComodification() { if (this.modCount != l.modCount) throw new ConcurrentModificationException(); } } class RandomAccessSubList<E> extends SubList<E> implements RandomAccess { RandomAccessSubList(AbstractList<E> list, int fromIndex, int toIndex) { super(list, fromIndex, toIndex); } public List<E> subList(int fromIndex, int toIndex) { return new RandomAccessSubList<>(this, fromIndex, toIndex); } }
private class Itr implements Iterator<E> { /** * Index of element to be returned by subsequent call to next. */ int cursor = 0; /** * Index of element returned by most recent call to next or * previous. Reset to -1 if this element is deleted by a call * to remove. */ int lastRet = -1; /** * The modCount value that the iterator believes that the backing * List should have. If this expectation is violated, the iterator * has detected concurrent modification. */ int expectedModCount = modCount; public boolean hasNext() { return cursor != size(); } public E next() { checkForComodification(); try { int i = cursor; E next = get(i); lastRet = i; cursor = i + 1; return next; } catch (IndexOutOfBoundsException e) { checkForComodification(); throw new NoSuchElementException(); } } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { AbstractList.this.remove(lastRet); if (lastRet < cursor) cursor--; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException e) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } }
public Iterator<E> iterator() { return new Itr(); }
AbstractList的内部类Itr其实就是Iterator的实现类ConcreteIterator.
AbstractList相当于ConcreteAggregate(容器实现类),它持有了ConcreteIterator(迭代器实现类)Itr的引用.因为AbstractList持有了Itr的实例化对象,可以通过AbstractList的iterator()方法return Itr的实例.
这就是为什么我们平时获得一个内部迭代器的时候不是new()而是iterator()
Itr是AbstractList的内部迭代器.因为Itr是private私有的而且是一个内部类.
迭代器设计模式结构图上半部分不做.因为抽象容器接口是可有可无的.
了解了JDK的容器内部的Iterator是如何进行遍历的.
ConcreteIterator一般是私有的,而且是容器里面的内部类.因为内部类可以访问外部类的数据,例如BookList的bookList和index.不然迭代器怎么可能知道容器类里面有什么东西.就是因为迭代器是容器类的内部类所以可以访问容器类的内部数据.
容器接口:Collection
容器实现类:AbstractList和BookList.
迭代器模式隐藏了容器的实现细节.到底容器里面是ArrayList还是LinkedList还是Map外部调用者都不知道.
无论是ArrayList还是LinkedList都有一个iterator()方法来返回它的内部迭代器.一方面是方便调用,一方面是调用者不必关心迭代器的实现细节.有了iterator这个方法,外部调用者可以很方便地获得容器的内部迭代器.而这个内部迭代器都有hasNext()和next(),很容易判断是否有下一个和获得下一个.
public ListIterator<E> listIterator() { return listIterator(0); }
private class ListItr extends Itr implements ListIterator<E> { ListItr(int index) { cursor = index; } public boolean hasPrevious() { return cursor != 0; } public E previous() { checkForComodification(); try { int i = cursor - 1; E previous = get(i); lastRet = cursor = i; return previous; } catch (IndexOutOfBoundsException e) { checkForComodification(); throw new NoSuchElementException(); } } public int nextIndex() { return cursor; } public int previousIndex() { return cursor-1; } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { AbstractList.this.set(lastRet, e); expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; AbstractList.this.add(i, e); lastRet = -1; cursor = i + 1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } }
这是另外一种迭代方法.JDK的容器类AbstractList的另外一种迭代方法.
public class Book { private String ISBN; private String name; private double price; public String getISBN() { return ISBN; } public void setISBN(String iSBN) { ISBN = iSBN; } public String getName() { return name; } public void setName(String name) { this.name = name; } public Double getPrice() { return price; } public void setPrice(double price) { this.price = price; } public Book(String iSBN, String name, double price) { super(); this.ISBN = iSBN; this.name = name; this.price = price; } public void display(){ System.out.println("ISBN=" +ISBN + ",name=" + name +",price=" + price); } }
import java.util.ArrayList; import java.util.Iterator; import java.util.List; public class BookList { private List<Book> bookList; private int index; private Iterator iterator; public BookList() { super(); // TODO Auto-generated constructor stub bookList = new ArrayList<Book>(); } /* public BookList(List<Book> bookList) { super(); this.bookList = bookList; } */ //添加书籍 public void addBook(Book book){ bookList.add(book); } //删除书籍 public void deleteBook(Book book){ //int bookIndex = bookList.indexOf(book); //bookList.remove(bookIndex); bookList.remove(book); } /* //判断是否有下一本书 public boolean hasNext(){ if(index >= bookList.size()){ return false; } return true; } //获得下一本书 public Book getNext(){ return bookList.get(index++); }*/ /* public List<Book> getBookList(){ return bookList; }*/ public Iterator Iterator(){ return new Itr();//ConcreteIterator的实现类 } private class Itr implements Iterator{ @Override public boolean hasNext() { // TODO Auto-generated method stub if(index >= bookList.size()){ return false; } return true; } @Override public Object next() {//因为这里是object类型的. // TODO Auto-generated method stub return bookList.get(index++); } @Override public void remove() { // TODO Auto-generated method stub } } }
import java.util.Iterator; import java.util.List; public class MainClass { public static void main(String[] args) { BookList bookList = new BookList(); Book book1 = new Book("010203","Java编程思想",90); Book book2 = new Book("010204","Java从入门到精通",60); bookList.addBook(book1); bookList.addBook(book2); /* while(bookList.hasNext()){ Book book = bookList.getNext(); book.display(); }*/ /* List<Book> bookDateList = bookList.getBookList();//获得bookList里面的一个数据 for(int i=0;i<bookDateList.size();i++){ Book book = bookDateList.get(i); book.display(); }*/ Iterator iter = bookList.Iterator(); while(iter.hasNext()){ Book book = (Book) iter.next(); book.display(); } } }