摘要:
一、.选择使用什么数据,有哪些字段,多大数据量。 us-counties美新冠数据;字段有日期(date),县(county), 国家、州(state),确诊情况(cases),死亡人数(deaths); 二、准备分析哪些问题?(8个以上) 1、统计美国某个县每天的确诊病例和死亡病例 2、统计美国确 阅读全文
摘要:
spark连接mysql数据库: 1.安装启动检查Mysql服务。 2.spark 连接mysql驱动程序。 –cp /usr/local/hive/lib/mysql-connector-java-5.1.40-bin.jar /usr/local/spark/jars netstat -tunl 阅读全文
摘要:
读学生课程分数文件chapter4-data01.txt,创建DataFrame。 1.生成“表头” 2.生成“表中的记录” 3.把“表头”和“表中的记录”拼装在一起 用DataFrame的操作或SQL语句完成以下数据分析要求,并和用RDD操作的实现进行对比: 一、DataFrame的操作 每个分数 阅读全文
摘要:
1.pandas df 与 spark df的相互转换 df_s=spark.createDataFrame(df_p) df_p=df_s.toPandas() 2. Spark与Pandas中DataFrame对比 http://www.lining0806.com/spark%E4%B8%8E 阅读全文
摘要:
1.Spark SQL出现的 原因是什么? sparkSQL的前身是shark。在hadoop发展过程当中,为了给熟悉RDBMS但又不理解MapReduce的技术人员提供快速上手的工具,hive应运而生,是当时惟一运行在hadoop上的SQL-on-Hadoop工具。 sparkSQL做为Spark 阅读全文
摘要:
1.读文本文件生成RDD lines lines = sc.textFile('file:///home/hadoop/word.txt') lines.collect() 2.将一行一行的文本分割成单词 words words=lines.flatMap(lambda line:line.spli 阅读全文
摘要:
一、词频统计: 1.读文本文件生成RDD lines 2.将一行一行的文本分割成单词 words flatmap() 3.全部转换为小写 lower() 4.去掉长度小于3的单词 filter() 5.去掉停用词 6.转换成键值对 map() 7.统计词频 reduceByKey() 二、学生课程分 阅读全文
摘要:
一、filter,map,flatmap练习: 1.读文本文件生成RDD lines 2.将一行一行的文本分割成单词 words 3.全部转换为小写 4.去掉长度小于3的单词 5.去掉停用词 二、groupByKey练习 6.练习一的生成单词键值对 7.对单词进行分组 8.查看分组结果 学生科目成绩 阅读全文
摘要:
1. 准备文本文件从文件创建RDD lines=sc.textFile()筛选出含某个单词的行 lines.filter()lambda 参数:条件表达式 2. 生成单词的列表从列表创建RDD words=sc.parallelize()筛选出长度大于2 的单词 words.filter() 3. 阅读全文
摘要:
1. 阐述Hadoop生态系统中,HDFS, MapReduce, Yarn, Hbase及Spark的相互关系,为什么要引入Yarn和Spark。 Hadoop是一个能够对大量数据进行分布式处理的软件框架。具有可靠、高效、可伸缩的特点。 Hadoop的核心是HDFS和MapReduce,hadoo 阅读全文