[BJOI2019] 删数
https://www.luogu.org/problemnew/show/P5324
题解
首先我们需要弄清这个答案是什么。
对于一个长度为n的序列,那么它先删的肯定是\(n\),删完之后它就会跳到\(n-cnt[n]\)位置,然后变成子问题继续做 。
于是我们把每个数看做一条覆盖\(n-cnt[n]+1 \sim n\)的一条线段,那么有解的前提是\(1\sim n\)中的每个数都被覆盖了。
如果没有,需要调整多少次呢?
可以发现,我们可以花费一的代价将一条线段的长度-1,再将另一条线段长度+1,可以发现答案就是所有没有被覆盖的位置的长度和。
然后用线段树完成这个操作,整体加的话就将询问区间平移,注意:右端点不在询问区间内的线段要清掉。
代码
#include<bits/stdc++.h>
#define N 150009
#define P pair<int,int>
#define mm make_pair
using namespace std;
typedef long long ll;
int tr[N*12],la[N*12],num[N*12],nowl,nowr,maxn,n,m,a[N],tag;
map<int,int>tong;
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
void build(int cnt,int l,int r){
num[cnt]=r-l+1;
if(l==r)return;
int mid=(l+r)>>1;
build(cnt<<1,l,mid);build(cnt<<1|1,mid+1,r);
}
inline void pushdown(int cnt){
la[cnt<<1]+=la[cnt];
tr[cnt<<1]+=la[cnt];
la[cnt<<1|1]+=la[cnt];
tr[cnt<<1|1]+=la[cnt];
la[cnt]=0;
}
inline P merge(P x,P y){
P z=x;
if(y.first<z.first)z=y;
else if(y.first==z.first)z.second+=y.second;
return z;
}
inline void pushup(int cnt){
tr[cnt]=tr[cnt<<1];num[cnt]=num[cnt<<1];
if(tr[cnt<<1|1]<tr[cnt])tr[cnt]=tr[cnt<<1|1],num[cnt]=num[cnt<<1|1];
else if(tr[cnt<<1|1]==tr[cnt])num[cnt]+=num[cnt<<1|1];
}
P query(int cnt,int l,int r,int L,int R){
if(l>=L&&r<=R)return mm(tr[cnt],num[cnt]);
int mid=(l+r)>>1;
if(la[cnt])pushdown(cnt);
if(mid>=L&&mid<R)return merge(query(cnt<<1,l,mid,L,R),query(cnt<<1|1,mid+1,r,L,R));
if(mid>=L)return query(cnt<<1,l,mid,L,R);
if(mid<R)return query(cnt<<1|1,mid+1,r,L,R);
}
void upd(int cnt,int l,int r,int L,int R,int tag){
if(l>=L&&r<=R){
tr[cnt]+=tag;
la[cnt]+=tag;
return;
}
int mid=(l+r)>>1;
if(la[cnt])pushdown(cnt);
if(mid>=L)upd(cnt<<1,l,mid,L,R,tag);
if(mid<R)upd(cnt<<1|1,mid+1,r,L,R,tag);
pushup(cnt);
}
inline void work(int l,int r,int tag){
l=max(l,nowl);r=min(r,nowr);
if(l>r)return;
upd(1,1,maxn,l-nowl,r-nowl,tag);
}
int main(){
n=rd();m=rd();
nowl=1-m-1;nowr=n+m+1;
maxn=nowr-nowl+1;
build(1,1,maxn);
int ls=1,rs=n;
for(int i=1;i<=n;++i)a[i]=rd(),tong[a[i]]++;
for(int i=1;i<=n;++i)work(i-tong[i]+1,i,1);
int p,x;
while(m--){
p=rd();x=rd();
if(!p){
ls-=x;rs-=x;tag-=x;
if(x<0){
int xx=rs,yy=ls-1;
if(tong.find(xx)!=tong.end())work(xx-tong[xx]+1,xx,1);
if(tong.find(yy)!=tong.end())work(yy-tong[yy]+1,yy,-1);
}
else{
int xx=ls,yy=rs+1;
if(tong.find(xx)!=tong.end())work(xx-tong[xx]+1,xx,1);
if(tong.find(yy)!=tong.end())work(yy-tong[yy]+1,yy,-1);
}
}
else{
x+=tag;
if(a[p]>=ls&&a[p]<=rs)work(a[p]-tong[a[p]]+1,a[p]-tong[a[p]]+1,-1);
tong[a[p]]--;
a[p]=x;
tong[a[p]]++;
if(a[p]>=ls&&a[p]<=rs)work(a[p]-tong[a[p]]+1,a[p]-tong[a[p]]+1,1);
}
P xx=query(1,1,maxn,ls-nowl,rs-nowl);
if(xx.first==0)printf("%d\n",xx.second);
else puts("0");
}
return 0;
}