POJ 2976 Dropping tests(01分数规划)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions:17069 | Accepted: 5925 |
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
Sample Input
3 1 5 0 2 5 1 6 4 2 1 2 7 9 5 6 7 9 0 0
Sample Output
83 100
Hint
To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).
思路:
为了做POJ 2728 ,先做此题,作为练习。
此题有一个算法,叫做01分数规划,目标就是求给定条件下的平均值最大值。平均值最大值是不可以直接有各个平均值累和的,这是因为S(a)/S(b)----s表示求和,这个式子就是平均值。
对于这个式子,很明显是除法运算,所以S(a)/S(b)并不会等于S(a/b),这是显而易见的,而我们现在要做的就是,找出这样一个x,使得S(a)/S(b)与x作比较,并对x进行调整,直到找出满足条件的临界点为止。此时,为了方便计算,我们可以做一点变形,就是S(a)与S(b)*x比较,在这种情况下,我们就可以求出每一点的a-b*x,再进行累和了,因为现在是减法运算。
代码
1 #include<iostream> 2 #include<algorithm> 3 #include<cstdio> 4 using namespace std; 5 typedef long long ll; 6 ll a[1024],b[1024]; 7 int n,k; 8 const double eps = 1e-7; 9 double ans[1024]; 10 double num(double m) 11 { 12 for(int i=1;i<=n;i++){ 13 ans[i]=a[i]-m*b[i]; 14 } 15 sort(ans+1,ans+1+n); 16 double sum=0; 17 for(int i=n;i>=k+1;i--){sum+=ans[i];} 18 return sum>=0; 19 } 20 21 int main() 22 { 23 while(scanf("%d%d",&n,&k)!=EOF&&n+k){ 24 for(int i=1;i<=n;i++){ 25 scanf("%lld",&a[i]); 26 } 27 for(int i=1;i<=n;i++){ 28 scanf("%lld",&b[i]); 29 } 30 31 double mid,l,r; 32 l=0,r=1; 33 while(r-l>eps){ 34 mid=(l+r)/2; 35 if(num(mid)){l=mid;} 36 else r=mid; 37 } 38 printf("%.0f\n",mid*100); 39 } 40 }
如有侵权,联系删除
2290713181@qq.com