POJ 2976 Dropping tests(01分数规划)

                              Dropping tests
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions:17069   Accepted: 5925

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

 

思路:

为了做POJ 2728 ,先做此题,作为练习。

此题有一个算法,叫做01分数规划,目标就是求给定条件下的平均值最大值。平均值最大值是不可以直接有各个平均值累和的,这是因为S(a)/S(b)----s表示求和,这个式子就是平均值。

对于这个式子,很明显是除法运算,所以S(a)/S(b)并不会等于S(a/b),这是显而易见的,而我们现在要做的就是,找出这样一个x,使得S(a)/S(b)与x作比较,并对x进行调整,直到找出满足条件的临界点为止。此时,为了方便计算,我们可以做一点变形,就是S(a)与S(b)*x比较,在这种情况下,我们就可以求出每一点的a-b*x,再进行累和了,因为现在是减法运算。

代码

 1 #include<iostream>
 2 #include<algorithm>
 3 #include<cstdio>
 4 using namespace std;
 5 typedef long long ll;
 6 ll a[1024],b[1024];
 7 int n,k;
 8 const double eps = 1e-7;
 9 double ans[1024];
10 double num(double m)
11 {
12     for(int i=1;i<=n;i++){
13         ans[i]=a[i]-m*b[i];
14     }
15     sort(ans+1,ans+1+n);
16     double sum=0;
17     for(int i=n;i>=k+1;i--){sum+=ans[i];}
18     return sum>=0;
19 }
20 
21 int main()
22 {
23     while(scanf("%d%d",&n,&k)!=EOF&&n+k){
24         for(int i=1;i<=n;i++){
25             scanf("%lld",&a[i]);
26         }
27         for(int i=1;i<=n;i++){
28             scanf("%lld",&b[i]);
29         }
30 
31         double mid,l,r;
32         l=0,r=1;
33         while(r-l>eps){
34             mid=(l+r)/2;
35             if(num(mid)){l=mid;}
36             else r=mid;
37         }
38         printf("%.0f\n",mid*100);
39     }
40 }

 

posted @ 2018-07-28 16:44  断腿三郎  阅读(153)  评论(0编辑  收藏  举报