HDU - 3530 Subsequence (单调队列)

Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9847    Accepted Submission(s): 3292


Problem Description
There is a sequence of integers. Your task is to find the longest subsequence that satisfies the following condition: the difference between the maximum element and the minimum element of the subsequence is no smaller than m and no larger than k.
 
Input
There are multiple test cases.
For each test case, the first line has three integers, n, m and k. n is the length of the sequence and is in the range [1, 100000]. m and k are in the range [0, 1000000]. The second line has n integers, which are all in the range [0, 1000000].
Proceed to the end of file.
 
Output
For each test case, print the length of the subsequence on a single line.
 
Sample Input
5 0 0 1 1 1 1 1 5 0 3 1 2 3 4 5
 
Sample Output
5 4
 
题意:给出一个长度为n的数列,求一个最长的区间,使得区间中最小值和最大值的差在[m,k]之间 (来自vj)
思路:
维护两个单调队列,这里的单调队列并不是维护一个固定滑动窗口的值,而是有自己的出队规则。
两个单调队列,一个非增,一个非降。
按输入顺序开始更新两个单调队列,倘若当前的值会更新最小值,并且与目前单调队列的最大值的差大于k,那么就要舍弃这个最大值。显而易见,这个最大值之前的位置也一定不会是要求区间的左端点。
倘若当前的值会更新最大值,同理。
但是在代码中,并没有判断当前更新的是最大还是最小值。因为如果你更新的是最小值,维护最小值的单调队列首部位置就是当前位置,而维护最大值的单调队列首部位置一定小于等于当前位置,如果更新的是最大值同理。所以只需要去掉那个靠前的就行了。
用一个pre维护最后一个去掉的位置,这个位置的后一个位置就可能是要求区间的左端点。
 1 #include<iostream>
 2 #include<algorithm>
 3 #include<vector>
 4 #include<stack>
 5 #include<queue>
 6 #include<map>
 7 #include<set>
 8 #include<cstdio>
 9 #include<cstring>
10 #include<cmath>
11 #include<ctime>
12 #define fuck(x) cout<<#x<<" = "<<x<<endl;
13 #define debug(a,i) cout<<#a<<"["<<i<<"] = "<<a[i]<<endl;
14 #define ls (t<<1)
15 #define rs ((t<<1)+1)
16 using namespace std;
17 typedef long long ll;
18 typedef unsigned long long ull;
19 const int maxn = 100086;
20 const int maxm = 100086;
21 const int inf = 2.1e9;
22 const ll Inf = 999999999999999999;
23 const int mod = 1000000007;
24 const double eps = 1e-6;
25 const double pi = acos(-1);
26 
27 struct node{
28     int num,pos;
29 };
30 int num[maxn];
31 deque<node>q1,q2;
32 
33 int main()
34 {
35 //    ios::sync_with_stdio(false);
36 //    freopen("in.txt","r",stdin);
37 
38     int n,m,k;
39     while(scanf("%d%d%d",&n,&m,&k)!=EOF){
40         for(int i=1;i<=n;i++){
41             scanf("%d",&num[i]);
42         }
43         int ans=0;int pre=0;
44         q1.clear();
45         q2.clear();
46         for(int i=1;i<=n;i++){
47             while(!q1.empty()&&q1.back().num<num[i]){
48                 q1.pop_back();
49             }while(!q2.empty()&&q2.back().num>num[i]){
50                 q2.pop_back();
51             }
52             q1.push_back(node{num[i],i});
53             q2.push_back(node{num[i],i});
54             while(q1.front().num-q2.front().num>k){
55                 if(q1.front().pos<q2.front().pos){
56                     pre=q1.front().pos;
57                     q1.pop_front();
58                 }
59                 else{
60                     pre=q2.front().pos;
61                     q2.pop_front();
62                 }
63             }
64             if(q1.front().num-q2.front().num>=m){
65                 ans=max(ans,i-pre);
66             }
67         }
68         printf("%d\n",ans);
69     }
70 
71 
72     return 0;
73 }
View Code

 

 
posted @ 2019-05-01 21:10  断腿三郎  阅读(190)  评论(0编辑  收藏  举报