Yellow 就怕你碌碌无为,还安慰自己平凡可贵 -------------yolo

利用selenium 爬取豆瓣 武林外传数据并且完成 数据可视化 情绪分析

全文的步骤可以大概分为几步:

一:数据获取,利用selenium+多进程(linux上selenium 多进程可能会有问题)+kafka写数据(linux首选必选耦合)windows直接采用的是写mysql

二:数据存储(kafka+hive 或者mysql)+数据清洗shell +python3

三: 数据可视化,词云  pyecharts jieba分词 snownlp (情绪化分析)

 

step 1 

selenium 模拟登陆豆瓣,爬去武林外传的短评:

  在最开始写爬虫的时候,抓取豆瓣评论,我们从F12里面是可以直接发现接口的,但是最近豆瓣更新,数据是JS异步加载的,所以没有找到合适的方法爬去,于是采用了selenium来模拟浏览器爬取。

  豆瓣登陆也是改了样式,我们可以发现登陆页面是在另一个frame里面

所以代码如下:

# -*- coding:utf-8 -*-
# 导包
import time
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
# 创建chrome参数对象
opt = webdriver.ChromeOptions()
# 把chrome设置成无界面模式,不论windows还是linux都可以,自动适配对应参数
opt.set_headless()
# 用的是谷歌浏览器
driver = webdriver.Chrome(options=opt)
driver=webdriver.Chrome()
# 登录豆瓣网
driver.get("http://www.douban.com/")

# 切换到登录框架中来
driver.switch_to.frame(driver.find_elements_by_tag_name("iframe")[0])
# 点击"密码登录"
bottom1 = driver.find_element_by_xpath('/html/body/div[1]/div[1]/ul[1]/li[2]')
bottom1.click()

# # 输入密码账号
input1 = driver.find_element_by_xpath('//*[@id="username"]')
input1.clear()
input1.send_keys("xxxxx")

input2 = driver.find_element_by_xpath('//*[@id="password"]')
input2.clear()
input2.send_keys("xxxxx")

# 登录
bottom = driver.find_element_by_class_name('account-form-field-submit ')
bottom.click()

 然后跳转到评论界面      https://movie.douban.com/subject/3882715/comments?sort=new_score

点击下一页发现url变化  https://movie.douban.com/subject/3882715/comments?start=20&limit=20&sort=new_score 所以我们观察到变化后可以直接写循环

 

 获取用户的姓名

 

driver.find_element_by_xpath('//*[@id="comments"]/div[{}]/div[2]/h3/span[2]/a'.format(str(i))).text
用户的评论

driver.find_element_by_xpath('//*[@id="comments"]/div[{}]/div[2]/p/span'.format(str(i))).text
然后我们想要知道用户的居住地:
1    #获取用户的url然后点击url获取居住地
2             userInfo=driver.find_element_by_xpath('//*[@id="comments"]/div[{}]/div[2]/h3/span[2]/a'.format(str(i))).get_attribute('href')
3             driver.get(userInfo)
4             try:
5                 userLocation = driver.find_element_by_xpath('//*[@id="profile"]/div/div[2]/div[1]/div/a').text
6                 print("用户的居之地是:  ")
7                 print(userLocation)
8             except Exception as e:
9                 print(e)

这里要注意有些用户没有写居住地,所以必须要捕获异常

完整代码

# -*- coding:utf-8 -*-
# 导包
import time
from selenium import webdriver
import pymysql
from selenium.webdriver.common.keys import Keys
from multiprocessing import Pool

class doubanwlwz_spider():
    def writeMysql(self,userName,userConment,userLocation):
        # 打开数据库连接
        db = pymysql.connect("123XXX1", "zXXXan", "XXX1", "huXXXt")
        # 使用 cursor() 方法创建一个游标对象 cursor
        cursor = db.cursor()
        sql = "insert into userinfo(username,commont,location) values(%s, %s, %s)"
        cursor.execute(sql, [userName, userConment, userLocation])
        db.commit()
        # 关闭数据库连接
        cursor.close()
        db.close()

    def getInfo(self,page):
    # 切换到登录框架中来
    # 登录豆瓣网
        opt = webdriver.ChromeOptions()


    # 用的是谷歌浏览器

    # 把chrome设置成无界面模式,不论windows还是linux都可以,自动适配对应参数
        opt.add_argument('--no-sandbox')
        opt.add_argument('--disable-gpu')
        opt.add_argument('--hide-scrollbars')  # 隐藏滚动条, 应对一些特殊页面

        opt.add_argument('blink-settings=imagesEnabled=false')  # 不加载图片, 提升速度
    # 用的是谷歌浏览器
        driver = webdriver.Chrome('D:\chromedriver_win32\chromedriver', options=opt)

        driver.get("http://www.douban.com/")
        driver.switch_to.frame(driver.find_elements_by_tag_name("iframe")[0])
        # 点击"密码登录"
        bottom1 = driver.find_element_by_xpath('/html/body/div[1]/div[1]/ul[1]/li[2]')
        bottom1.click()
        # # 输入密码账号
        input1 = driver.find_element_by_xpath('//*[@id="username"]')
        input1.clear()
        input1.send_keys("1XXX2")

        input2 = driver.find_element_by_xpath('//*[@id="password"]')
        input2.clear()
        input2.send_keys("zXXX344")

        # 登录
        bottom = driver.find_element_by_class_name('account-form-field-submit ')
        bottom.click()

        time.sleep(1)
        #获取全部评论 一共有24页,每个页面20个评论,一共能抓取到480个
        for i in  range((page-1)*240,page*240,20):
            driver.get('https://movie.douban.com/subject/3882715/comments?start={}&limit=20&sort=new_score'.format(i))
            print("开始抓取第%i页面"%(i))
            search_window = driver.current_window_handle
            # pageSource=driver.page_source
            # print(pageSource)
            #获取用户的名字 每页20个
            for i in range(1,21):
                userName=driver.find_element_by_xpath('//*[@id="comments"]/div[{}]/div[2]/h3/span[2]/a'.format(str(i))).text
                print("用户的名字是:  %s"%(userName))
         #  获取用户的评论
            # print(driver.find_element_by_xpath('//*[@id="comments"]/div[1]/div[2]/p/span').text)
                userConment=driver.find_element_by_xpath('//*[@id="comments"]/div[{}]/div[2]/p/span'.format(str(i))).text
                print("用户的评论是:  %s"%(userConment))
        #获取用户的url然后点击url获取居住地
                userInfo=driver.find_element_by_xpath('//*[@id="comments"]/div[{}]/div[2]/h3/span[2]/a'.format(str(i))).get_attribute('href')
                driver.get(userInfo)
                try:
                    userLocation = driver.find_element_by_xpath('//*[@id="profile"]/div/div[2]/div[1]/div/a').text
                    print("用户的居之地是  %s"%(userLocation))
                    driver.back()
                    self.writeMysql(userName, userConment, userLocation)
                except Exception as e:
                    userLocation='未填写'
                    self.writeMysql(userName, userConment, userLocation)
                    driver.back()
        driver.close()



if __name__ == '__main__':
    AAA=doubanwlwz_spider()
    p = Pool(3)
    startTime = time.time()
    for i in range(1, 3):
        p.apply_async(AAA.getInfo, args=(i,))
    p.close()
    p.join()
    stopTime = time.time()
    print('Running time: %0.2f Seconds' % (stopTime - startTime))

 

step 2

 linux代码(这里需要注意 linux对于selenium和这里的多进程适配不是很好,建议使用windows,linux上面写的是kafka)kafka代码如下

# -*- coding: utf-8 -*-
from kafka import KafkaProducer
from kafka import KafkaConsumer
from kafka.errors import KafkaError
import json
import time
import sys


class Kafka_producer():
    '''
    使用kafka的生产模块
    '''

    def __init__(self, kafkahost, kafkaport, kafkatopic):
        self.kafkaHost = kafkahost
        self.kafkaPort = kafkaport
        self.kafkatopic = kafkatopic
        self.producer = KafkaProducer(bootstrap_servers='{kafka_host}:{kafka_port}'.format(
            kafka_host=self.kafkaHost,
            kafka_port=self.kafkaPort
        ))

    def sendjsondata(self, params):
        try:
            #parmas_message = json.dumps(params)
            parmas_message =params
            producer = self.producer
            kafkamessage=parmas_message.encode('utf-8')
            producer.send(self.kafkatopic, kafkamessage,partition= 0)
   #         producer.send('test1', value= ingo1, partition= 0)

            producer.flush()
        except KafkaError as e:
            print(e)



def main(message,topicname):
    '''
    测试consumer和producer
    :return:
    '''
    # 测试生产模块
    producer = Kafka_producer("10XXX2", "9098", topicname)
    print("进入kafka的数据是%s"%(message))
    producer.sendjsondata(message)
    time.sleep(1)

 

 

# -*- coding:utf-8 -*-
# 导包
import time
from selenium import webdriver
import pymysql
from selenium.webdriver.common.keys import Keys
from multiprocessing import Pool
import  producer


class doubanwlwz_spider():
    def writeMysql(self,userName,userConment,userLocation):
        # 打开数据库连接
        db = pymysql.connect("123.207.35.161", "zhangfan", "N$nIpms1", "hupo_test")
        # 使用 cursor() 方法创建一个游标对象 cursor
        cursor = db.cursor()
        sql = "insert into userinfo(username,commont,location) values(%s, %s, %s)"
        cursor.execute(sql, [userName, userConment, userLocation])
        db.commit()
        # 关闭数据库连接
        cursor.close()
        db.close()



    def getInfo(self,page):
    # 切换到登录框架中来
    # 登录豆瓣网
        opt = webdriver.ChromeOptions()

    # 把chrome设置成无界面模式,不论windows还是linux都可以,自动适配对应参数
        opt.add_argument('--no-sandbox')
        opt.add_argument('--disable-gpu')
        opt.add_argument('--hide-scrollbars')  # 隐藏滚动条, 应对一些特殊页面
        opt.add_argument('blink-settings=imagesEnabled=false')  # 不加载图片, 提升速度
        opt.add_argument('--headless') #浏览器不提供可视化页面. 
        # 用的是谷歌浏览器
        driver = webdriver.Chrome('/opt/scripts/zf/douban/chromedriver',options=opt)

    # 用的是谷歌浏览器

        driver.get("http://www.douban.com/")
        driver.switch_to.frame(driver.find_elements_by_tag_name("iframe")[0])
        # 点击"密码登录"
        bottom1 = driver.find_element_by_xpath('/html/body/div[1]/div[1]/ul[1]/li[2]')
        bottom1.click()
        # # 输入密码账号
        input1 = driver.find_element_by_xpath('//*[@id="username"]')
        input1.clear()
        input1.send_keys("XXX2")

        input2 = driver.find_element_by_xpath('//*[@id="password"]')
        input2.clear()
        input2.send_keys("XX44")
        # 登录
        bottom = driver.find_element_by_class_name('account-form-field-submit ')
        bottom.click()

        time.sleep(1)
        print("登录成功")
        #获取全部评论 一共有480页,每个页面20个评论
        for i in  range((page-1)*120,page*120):
            driver.get('https://movie.douban.com/subject/3882715/comments?start={}&limit=20&sort=new_score'.format(i))
            print("开始抓取第%i页面"%(i))
            search_window = driver.current_window_handle
            # pageSource=driver.page_source
            # print(pageSource)
            #获取用户的名字 每页20个
            for i in range(1,21):
                userName=driver.find_element_by_xpath('//*[@id="comments"]/div[{}]/div[2]/h3/span[2]/a'.format(str(i))).text
                print("用户的名字是:  %s"%(userName))
#传递两个参数  第一个topic信息  第二个topic名称
                producer.main(userName,"username")
         #  获取用户的评论
            # print(driver.find_element_by_xpath('//*[@id="comments"]/div[1]/div[2]/p/span').text)
                userConment=driver.find_element_by_xpath('//*[@id="comments"]/div[{}]/div[2]/p/span'.format(str(i))).text
                print("用户的评论是:  %s"%(userConment))
                producer.main(userConment,"usercomment")
        #获取用户的url然后点击url获取居住地
                userInfo=driver.find_element_by_xpath('//*[@id="comments"]/div[{}]/div[2]/h3/span[2]/a'.format(str(i))).get_attribute('href')
                driver.get(userInfo)
                try:
                    userLocation = driver.find_element_by_xpath('//*[@id="profile"]/div/div[2]/div[1]/div/a').text
                    print("用户的居之地是  %s"%(userLocation))
                    producer.main(userLocation,"userlocation")
                except Exception as e:
                    userLocation='NUll'
                    producer.main("未填写","userlocation")
 ##               self.writeMysql(userName, userConment, userLocation)

#driver.back()


if __name__ == '__main__':
    AAA=doubanwlwz_spider()
    p = Pool(4)
    startTime = time.time()
    for i in range(1, 5):
        p.apply_async(AAA.getInfo, args=(i,))
    p.close()
    p.join()
    stopTime = time.time()
    print('Running time: %0.2f Seconds' % (stopTime - startTime))
                                                                                              

 

step 3

在windows上面直接从mysql读取数据做可视化                    对应linux需要消费kafka消息代码如下

rom kafka import KafkaConsumer
from multiprocessing import Pool
import json
import re


def writeTxt(topic):
        consumer = KafkaConsumer(topic,
                         auto_offset_reset='earliest',
                         group_id = "test1",
                         bootstrap_servers=['10.8.31.2:9098'])

        for message in consumer:
    #print ("%s:%d:%d: key=%s value=%s" % (message.topic, message.partition,
                                         # message.offset, message.key,
                                          #message.value.decode('utf-8')))
#匹配中文(把中文符号替换为空) 需要注意的是kafka里面的数据是二进制这里必须decode
                string = re.sub("[\s+\.\!\/_,$%^*(+\"\']+|[+——!,。?、~@#¥%……&*()]+", " ", message.value.decode('utf-8'))
                print(string)
                f=open(topic,'a',encoding='utf-8')
                f.write(string)
                f.close()

p = Pool(4)
for i in {"userlocation","usercomment","username"}:
        print(i)
        p.apply_async(writeTxt, args=(i,))
p.close()
p.join()

 

------------------------------------------华丽的分割线 ----------------------------到此已经获取到了所以的数据----------------------------------------------------

 

 

 

获取到数据之后,首先对用户location做可视化

第一步 做数据清洗,把里面的数据中文符号全部转为为空格

import re
f = open('name.txt','r')
for line in f.readlines():
        string = re.sub("[\s+\.\!\/_,$%^*(+\"\']+|[+——!,。?、~@#¥%……&*()]+", " ", line)
        print(line)
        print(string)
        f1=open("newname.txt",'a',encoding='utf-8')
        f1.write(string)
        f1.close()
f.close()

第二步 数据做词云,需要过滤停用词,然后分词

#定义结巴分词的方法以及处理过程
import jieba.analyse
import jieba

#需要输入需要分析的文本名称,分析后输入的文本名称
class worldAnalysis():
    def __init__(self,inputfilename,outputfilename):
        self.inputfilename=inputfilename
        self.outputfilename=outputfilename
        self.start()
#--------------------------------这里实现分词和去停用词---------------------------------------
# 创建停用词列表
    def stopwordslist(self):
        stopwords = [line.strip() for line in open('ting.txt',encoding='UTF-8').readlines()]
        return stopwords

    # 对句子进行中文分词
    def seg_depart(self,sentence):
        # 对文档中的每一行进行中文分词
        print("正在分词")
        sentence_depart = jieba.cut(sentence.strip())
        # 创建一个停用词列表
        stopwords = self.stopwordslist()
        # 输出结果为outstr
        outstr = ''
        # 去停用词
        for word in sentence_depart:
            if word not in stopwords:
                if word != '\t':
                    outstr += word
                    outstr += " "
        return outstr

    def start(self):
        # 给出文档路径
        filename = self.inputfilename
        outfilename = self.outputfilename
        inputs = open(filename, 'r', encoding='UTF-8')
        outputs = open(outfilename, 'w', encoding='UTF-8')

        # 将输出结果写入ou.txt中
        for line in inputs:
            line_seg = self.seg_depart(line)
            outputs.write(line_seg + '\n')
            print("-------------------正在分词和去停用词-----------")
        outputs.close()
        inputs.close()
        print("删除停用词和分词成功!!!")

        self.LyricAnalysis()

    #实现数据词频统计
    def splitSentence(self):
        #下面的程序完成分析前十的数据出现的次数
        f = open(self.outputfilename, 'r', encoding='utf-8')
        a = f.read().split()
        b = sorted([(x, a.count(x)) for x in set(a)], key=lambda x: x[1], reverse=True)
        #print(sorted([(x, a.count(x)) for x in set(a)], key=lambda x: x[1], reverse=True))
        print("shuchub")
#        for i in range(0,100):
#               print(b[i][0],end=',')
#        print("---------")
#        for i in range(0,100):
#               print(b[i][1],end=',')
        for i in range(0,100):
            print("("+'"'+b[i][0]+'"'+","+ str(b[i][1])+')'+',')

    #输出频率最多的前十个字,里面调用splitSentence完成频率出现最多的前十个词的分析
    def LyricAnalysis(self):
        import jieba
        file = self.outputfilename
        #这个技巧需要注意
        alllyric = str([line.strip() for line in open(file,encoding="utf-8").readlines()])
    #获取全部歌词,在一行里面
        alllyric1=alllyric.replace("'","").replace(" ","").replace("?","").replace(",","").replace('"','').replace("?","").replace(".","").replace("!","").replace(":","")
       # print(alllyric1)
        self.splitSentence()
        #下面是词频(单个汉字)统计
        import collections
        # 读取文本文件,把所有的汉字拆成一个list
        f = open(file, 'r', encoding='utf8')  # 打开文件,并读取要处理的大段文字
        txt1 = f.read()
        txt1 = txt1.replace('\n', '')  # 删掉换行符
        txt1 = txt1.replace(' ', '')  # 删掉换行符
        txt1 = txt1.replace('.', '')  # 删掉逗号
        txt1 = txt1.replace('.', '')  # 删掉句号
        txt1 = txt1.replace('o', '')  # 删掉句号
        mylist = list(txt1)
        mycount = collections.Counter(mylist)
        for key, val in mycount.most_common(10):  # 有序(返回前10个)
            print("开始单词排序")
            print(key, val)
#输入文本为
newcomment.txt 输出 test.txt
AAA=worldAnalysis("newcomment.txt","test.txt")

输入结果  这样输出的原因是后面需要用pyechart做数据的词云

 

第三步 词云可视化

from pyecharts import options as opts
from pyecharts.charts import Page, WordCloud
from pyecharts.globals import SymbolType
from pyecharts.charts import Bar

from pyecharts.render import make_snapshot
from snapshot_selenium import snapshot

words = [
("经典",100),
("喜欢",65),
("情景喜剧",47),
("喜剧",42),
("搞笑",37),
("武林",36),
("现在",33),
("",29),
("外传",29),
("很多",29),
("点穴",28),
("葵花",28),
("电视剧",28),
("",27),
("觉得",27),
("排山倒海",26),
("真的",25),
("",25),
("",24),
("一个",23),
("小时候",23),
("",22),
("好看",21),
("这部",21),
("一部",20),
("每个",20),
("掌柜",19),
("台词",19),
("回忆",19),
("看过",18),
("里面",18),
("百看不厌",18),
("童年",18),
("秀才",18),
("国产",17),
("",17),
("中国",17),
("",16),
("非常",16),
("一集",15),
("",15),
("宁财神",15),
("没有",15),
("不错",14),
("不会",14),
("道理",14),
("重温",14),
("",14),
("演员",14),
("",13),
("",13),
("哈哈哈",13),
("人生",13),
("老白",13),
("人物",12),
("故事",12),
("",12),
("情景剧",11),
("开心",11),
("感觉",11),
("之后",11),
("",11),
("",11),
("幽默",11),
("每次",11),
("角色",10),
("",10),
("",10),
("客栈",10),
("看看",10),
("发现",10),
("生活",10),
("江湖",10),
("",10),
("记得",10),
("起来",9),
("特别",9),
("剧情",9),
("一直",9),
("一遍",9),
("印象",9),
("看到",9),
("不好",9),
("当时",9),
("最近",9),
("欢乐",9),
("知道",9),
("芙蓉",8),
("之作",8),
("绝对",8),
("无法",8),
("十年",8),
("依然",8),
("巅峰",8),
("好像",8),
("长大",8),
("深刻",8),
("无聊",8),
("以前",7),
("时间",7),
    
]


def wordcloud_base() -> WordCloud:
    c = (
        WordCloud()
        .add("", words, word_size_range=[20, 100],shape="triangle-forward",)
        .set_global_opts(title_opts=opts.TitleOpts(title="WordCloud-基本示例"))
    )
    return c
make_snapshot(snapshot, wordcloud_base().render(), "bar.png")
# wordcloud_base().render()

 

 

 

二 用户地址可视化

 

 

 用户所在地成都热点图

程序脚本:这里需要注意这里的城市一定要是中国城市的名称,为了处理元数据用了xlml(f)+py  随便放一下py脚本

 

数据处理

f=open("city.txt",'r')
for i in f.readlines():
        #print(i,end=",")
        print('"'+i.strip()+'"',end=",")

 

 

from example.commons import Faker
from pyecharts import options as opts
from pyecharts.charts import Geo
from pyecharts.globals import ChartType, SymbolType

def geo_base() -> Geo:
    c = (
        Geo()
        .add_schema(maptype="china")
        .add("geo", [list(z) for z in zip(["北京","广东","上海","广州","江苏","四川","武汉","湖北","深圳","成都","浙江","山东","福建","南京","福州","河北","江西","南宁","杭州","湖南","长沙","河南","郑州","苏州","重庆","济南","黑龙江","石家庄","西安","南昌","陕西","哈尔滨","吉林","厦门","天津","沈阳","香港","青岛","无锡","贵州"], ["86","52","42","29","26","20","16","16","16","16","13","12","12","12","8","7","7","7","7","6","6","6","6","6","6","6","5","5","5","5","5","5","4","4","4","4","3","3","3","3"])])
        .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
        .set_global_opts(
            visualmap_opts=opts.VisualMapOpts(),
            title_opts=opts.TitleOpts(title="城市热点图"),
        )
    )
    return c
geo_base().render()

 

 

 

 漏斗图  由于页面适配的问题这里已经筛减了很多城市了

from example.commons import Faker
from pyecharts import options as opts
from pyecharts.charts import Funnel, Page


def funnel_base() -> Funnel:
    c = (
        Funnel()
            .add("geo", [list(z) for z in zip(
            ["北京", "广东", "上海", "广州", "江苏", "四川", "武汉", "湖北", "深圳", "成都", "浙江", "山东", "福建", "南京", "福州", "河北", "江西", "南宁",
             "杭州", "湖南", "长沙", "河南", "郑州", "苏州", "重庆", "济南"],
            ["86", "52", "42", "29", "26", "20", "16", "16", "16", "16", "13", "12", "12", "12", "8", "7", "7", "7",
             "7", "6", "6", "6", "6", "6", "6", "6"])])

            .set_global_opts(title_opts=opts.TitleOpts())
    )
    return c
funnel_base().render('漏斗图.html')

 

 

 

 

 

饼图

from example.commons import Faker
from pyecharts import options as opts
from pyecharts.charts import Page, Pie


def pie_base() -> Pie:
    c = (
        Pie()
        .add("", [list(z) for z in zip(  ["北京", "广东", "上海", "广州", "江苏", "四川", "武汉", "湖北", "深圳", "成都", "浙江", "山东", "福建", "南京", "福州", "河北", "江西", "南宁",
             "杭州", "湖南", "长沙", "河南", "郑州", "苏州", "重庆", "济南"],
            ["86", "52", "42", "29", "26", "20", "16", "16", "16", "16", "13", "12", "12", "12", "8", "7", "7", "7",
             "7", "6", "6", "6", "6", "6", "6", "6"])])
        .set_global_opts(title_opts=opts.TitleOpts())
        .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    )
    return c

pie_base().render("饼图.html")

 

 

 评论情绪化分析代码如下

from snownlp import SnowNLP
f=open("comment.txt",'r')
sentiments=0
count=0

point2=0
point3=0
point4=0
point5=0
point6=0
point7=0
point8=0
point9=0
for i in f.readlines():
        s = SnowNLP(i)
        s1 = SnowNLP(s.sentences[0])
        for p in s.sentences:
                s = SnowNLP(p)
                s1 = SnowNLP(s.sentences[0])
                count+=1
                if s1.sentiments > 0.9:
                        point9+=1
                elif s1.sentiments> 0.8 and s1.sentiments <=0.9:
                        point8+=1
                elif s1.sentiments> 0.7 and s1.sentiments <=0.8:
                        point7+=1
                elif s1.sentiments> 0.6 and s1.sentiments <=0.7:
                        point6+=1
                elif s1.sentiments> 0.5 and s1.sentiments <=0.6:
                        point5+=1
                elif s1.sentiments> 0.4 and s1.sentiments <=0.5:
                        point4+=1
                elif s1.sentiments> 0.3 and s1.sentiments <=0.4:
                        point3+=1
                elif s1.sentiments> 0.2 and s1.sentiments <=0.3:
                        point2=1
                print(s1.sentiments)
                sentiments+=s1.sentiments

print(sentiments)
print(count)
avg1=int(sentiments)/int(count)
print(avg1)


print(point9)
print(point8)
print(point7)
print(point6)
print(point5)
print(point4)
print(point3)
print(point2)

 

情绪可视化

 

主要人物热力图

cat comment.txt  | grep -E  '佟|掌柜|湘玉|闫妮'  | wc -l 
33
cat comment.txt  | grep -E  '老白|展堂|盗圣'  | wc -l 
25
cat comment.txt  | grep -E  '大嘴'  | wc -l 
8
cat comment.txt  | grep -E  '小郭|郭|芙蓉'  | wc -l 
17
cat comment.txt  | grep -E  '秀才|吕轻侯'  | wc -l 
17
cat comment.txt  | grep -E  '小六'  | wc -l 
2

 

from pyecharts.charts import Bar
from pyecharts import options as opts

# V1 版本开始支持链式调用
bar = (
    Bar()
    .add_xaxis(["佟湘玉", "老白", "小郭", "秀才", "小六", "袜子"])
    .add_yaxis("人物热力", [33, 25, 8, 17, 17, 2])
    .set_global_opts(title_opts=opts.TitleOpts(title="人物热力"))
    # 或者直接使用字典参数
    # .set_global_opts(title_opts={"text": "主标题", "subtext": "副标题"})
)
bar.render("人物热力.html")

 

 

posted @ 2019-06-19 14:32  zfno11  阅读(3653)  评论(0编辑  收藏  举报