HDU 5649.DZY Loves Sorting-线段树+二分-当前第k个位置的数
DZY Loves Sorting
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 753 Accepted Submission(s): 249
Problem Description
DZY has a sequence a[1..n]. It is a permutation of integers 1∼n.
Now he wants to perform two types of operations:
0lr: Sort a[l..r] in increasing order.
1lr: Sort a[l..r] in decreasing order.
After doing all the operations, he will tell you a position k, and ask you the value of a[k].
Now he wants to perform two types of operations:
0lr: Sort a[l..r] in increasing order.
1lr: Sort a[l..r] in decreasing order.
After doing all the operations, he will tell you a position k, and ask you the value of a[k].
Input
First line contains t, denoting the number of testcases.
t testcases follow. For each testcase:
First line contains n,m. m is the number of operations.
Second line contains n space-separated integers a[1],a[2],⋯,a[n], the initial sequence. We ensure that it is a permutation of 1∼n.
Then m lines follow. In each line there are three integers opt,l,r to indicate an operation.
Last line contains k.
(1≤t≤50,1≤n,m≤100000,1≤k≤n,1≤l≤r≤n,opt∈{0,1}. Sum of n in all testcases does not exceed 150000. Sum of m in all testcases does not exceed 150000)
t testcases follow. For each testcase:
First line contains n,m. m is the number of operations.
Second line contains n space-separated integers a[1],a[2],⋯,a[n], the initial sequence. We ensure that it is a permutation of 1∼n.
Then m lines follow. In each line there are three integers opt,l,r to indicate an operation.
Last line contains k.
(1≤t≤50,1≤n,m≤100000,1≤k≤n,1≤l≤r≤n,opt∈{0,1}. Sum of n in all testcases does not exceed 150000. Sum of m in all testcases does not exceed 150000)
Output
For each testcase, output one line - the value of a[k] after performing all m operations.
Sample Input
1
6 3
1 6 2 5 3 4
0 1 4
1 3 6
0 2 4
3
Sample Output
5
Hint
1 6 2 5 3 4 -> [1 2 5 6] 3 4 -> 1 2 [6 5 4 3] -> 1 [2 5 6] 4 3. At last $a[3]=5$.
Source
Recommend
wange2014
题意就是一个n的排列,执行Q次操作,每次操作是对某个区间从小到大排序或者从大到小排序。最后只查询一次,输出第k个位置当前的数。
因为只查询一次,而且这是n的全排列,所以直接二分答案,比mid小的赋值为0,大的赋值为1。区间查询判断的时候直接与0和1比较就可以了。
代码:
1 //M-线段树+二分-HDU5649 2 #include<iostream> 3 #include<algorithm> 4 #include<cstring> 5 #include<iomanip> 6 #include<stdio.h> 7 #include<stdlib.h> 8 #include<math.h> 9 #include<cstdlib> 10 #include<set> 11 #include<map> 12 #include<ctime> 13 #include<stack> 14 #include<queue> 15 #include<vector> 16 #include<set> 17 using namespace std; 18 typedef long long ll; 19 const int inf=0x3f3f3f3f; 20 const double eps=1e-5; 21 const int maxn=1e5+10; 22 #define lson l,m,rt<<1 23 #define rson m+1,r,rt<<1|1 24 25 struct node{ 26 int c,l,r; 27 }q[maxn]; 28 int n,m,k; 29 int a[maxn],tree[maxn<<2],add[maxn<<2]; 30 31 void pushup(int rt) 32 { 33 tree[rt]=tree[rt<<1]+tree[rt<<1|1]; 34 } 35 void pushdown(int rt,int m) 36 { 37 if(add[rt]!=-1){ 38 add[rt<<1]=add[rt<<1|1]=add[rt]; 39 tree[rt<<1]=(m-(m>>1))*add[rt]; 40 tree[rt<<1|1]=(m>>1)*add[rt]; 41 add[rt]=-1; 42 } 43 } 44 void build(int x,int l,int r,int rt) 45 { 46 add[rt]=-1; 47 if(l==r){ 48 tree[rt]=a[l]<=x?0:1; 49 return ; 50 } 51 52 int m=(l+r)>>1; 53 build(x,lson); 54 build(x,rson); 55 pushup(rt); 56 } 57 void update(int L,int R,int c,int l,int r,int rt) 58 { 59 if(L>R) return ; 60 if(L<=l&&r<=R){ 61 add[rt]=c; 62 tree[rt]=(r-l+1)*c; 63 return ; 64 } 65 66 pushdown(rt,r-l+1); 67 int m=(l+r)>>1; 68 if(L<=m) update(L,R,c,lson); 69 if(R> m) update(L,R,c,rson); 70 pushup(rt); 71 } 72 int query(int L,int R,int l,int r,int rt) 73 { 74 if(L<=l&&r<=R){ 75 return tree[rt]; 76 } 77 78 pushdown(rt,r-l+1); 79 int m=(l+r)>>1;int ret=0; 80 if(L<=m) ret+=query(L,R,lson); 81 if(R> m) ret+=query(L,R,rson); 82 return ret; 83 } 84 bool check(int x) 85 { 86 build(x,1,n,1); 87 for(int i=1;i<=m;i++){ 88 int c=q[i].c,l=q[i].l,r=q[i].r; 89 int cnt=query(l,r,1,n,1); 90 if(c){ 91 update(l,l+cnt-1,1,1,n,1); 92 update(l+cnt,r,0,1,n,1); 93 } 94 else{ 95 update(r-cnt+1,r,1,1,n,1); 96 update(l,r-cnt,0,1,n,1); 97 } 98 } 99 return query(k,k,1,n,1); 100 } 101 int main() 102 { 103 int t; 104 scanf("%d",&t); 105 while(t--){ 106 scanf("%d%d",&n,&m); 107 for(int i=1;i<=n;i++) 108 scanf("%d",&a[i]); 109 for(int i=1;i<=m;i++) 110 scanf("%d%d%d",&q[i].c,&q[i].l,&q[i].r); 111 scanf("%d",&k); 112 int l=1,r=n; 113 while(l<=r){ 114 int mid=(l+r)>>1; 115 if(!check(mid)) r=mid-1; 116 else l=mid+1; 117 } 118 printf("%d\n",r+1); 119 } 120 return 0; 121 }