HDU 2586.How far away ?-在线LCA(ST)-代码很认真的写了注释(捞到变形)

2018.9.10 0:40 重新敲一遍,然后很认真的写了注释,方便自己和队友看,刚过去的一天的下午打网络赛有一题用到了这个,但是没写注释,队友改板子有点伤,因为我没注释。。。

以后写博客,代码要写注释,要把题目意思写上。。。

我好捞啊。。。

 

 

How far away ?

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 21408    Accepted Submission(s): 8432


Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
 

 

Input
First line is a single integer T(T<=10), indicating the number of test cases.
  For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
  Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
 

 

Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
 

 

Sample Input
2
3 2
1 2 10
3 1 15
1 2
2 3
 
2 2
1 2 100
1 2
2 1
 

 

Sample Output
10 25 100 100
 

 

Source
 
 
这个题就是求两点之间的最短距离,就是LCA模板题
 
 
代码:
  1 //HDU2586
  2 #include<iostream>
  3 #include<cstdio>
  4 #include<cstring>
  5 #include<algorithm>
  6 #include<bitset>
  7 #include<cassert>
  8 #include<cctype>
  9 #include<cmath>
 10 #include<cstdlib>
 11 #include<ctime>
 12 #include<deque>
 13 #include<iomanip>
 14 #include<list>
 15 #include<map>
 16 #include<queue>
 17 #include<set>
 18 #include<stack>
 19 #include<vector>
 20 using namespace std;
 21 typedef long long ll;
 22 
 23 const double PI=acos(-1.0);
 24 const double eps=1e-6;
 25 const ll mod=1e9+7;
 26 const int inf=0x3f3f3f3f;
 27 const int maxn=4e4+10;
 28 const int maxm=100+10;
 29 #define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
 30 
 31 int dp[maxn<<1][25];//数组记得开2倍,因为遍历之后序列长度变为2*n-1
 32 bool vis[maxn];//标记
 33 
 34 struct node{
 35     int u,v,w,next;
 36 }edge[maxn<<1];
 37 
 38 int tot,head[maxn];//head保存的是以当前节点为起点的所有边中最后一条边的编号
 39 
 40 int num;
 41 
 42 inline void add(int u,int v,int w)
 43 {
 44     edge[num].u=u;edge[num].v=v;edge[num].w=w;//存边和权值
 45     edge[num].next=head[u];head[u]=num++;//next保存的是以u为起点的上一条边的编号
 46     u=u^v;v=u^v;u=u^v;//节点互换,存两次,因为为无向图,(u,v)存一次,(v,u)存一次,以下操作同上
 47     edge[num].u=u;edge[num].v=v;edge[num].w=w;
 48     edge[num].next=head[u];head[u]=num++;
 49 }
 50 
 51 int ver[maxn<<1],deep[maxn<<1],node[maxn<<1],dir[maxn<<1];
 52 //ver节点编号,dfs搜索过程中的序列,deep深度,node点编号位置,dir距离
 53 
 54 void dfs(int u,int dep)
 55 {
 56     vis[u]=true;//标记u节点被访问过
 57     ver[++tot]=u;//存dfs序
 58     node[u]=tot;//节点的dfs序的编号
 59     deep[tot]=dep;//该编号的深度
 60     for(int k=head[u];k!=-1;k=edge[k].next)//倒着遍历以u节点为起点的所有边的编号
 61     if(!vis[edge[k].v]){//如果该编号的边未被访问过
 62         int v=edge[k].v,w=edge[k].w;//v表示该边的终点,w表示该边的权值
 63         dir[v]=dir[u]+w;//权值和
 64         dfs(v,dep+1);//再往下dfsv节点的深度
 65         ver[++tot]=u;deep[tot]=dep;//表示dfs的时候还要回溯到上面,就是把dfs序保存一下,走到底再返回去去遍历没走过的点
 66     }
 67 }
 68 //可以看以前写的RMQ(ST)的详解https://www.cnblogs.com/ZERO-/p/8456910.html
 69 void ST(int n)//ST操作
 70 {
 71     for(int i=1;i<=n;i++)
 72         dp[i][0]=i;//初始化为自己
 73     for(int j=1;(1<<j)<=n;j++){
 74         for(int i=1;i+(1<<j)-1<=n;i++){
 75             int a=dp[i][j-1],b=dp[i+(1<<(j-1))][j-1];
 76             dp[i][j]=deep[a]<deep[b]?a:b;
 77         }
 78     }
 79 }
 80 
 81 int RMQ(int l,int r)
 82 {
 83     int k=0;
 84     while((1<<(k+1))<=r-l+1)k++;//最多能跳2的多少次幂
 85     int a=dp[l][k],b=dp[r-(1<<k)+1][k];//保存的是编号
 86     return deep[a]<deep[b]?a:b;
 87 }
 88 
 89 int LCA(int u,int v)
 90 {
 91     int x=node[u],y=node[v];
 92     if(x>y)swap(x,y);
 93     int res=RMQ(x,y);
 94     return ver[res];
 95 }
 96 
 97 int main()
 98 {
 99     int cas;
100     scanf("%d",&cas);
101     while(cas--){
102         int n,q;
103         num=0;
104         scanf("%d%d",&n,&q);
105         memset(head,-1,sizeof(head));//初始化
106         memset(vis,false,sizeof(vis));
107         for(int i=1;i<n;i++){
108             int u,v,w;
109             scanf("%d%d%d",&u,&v,&w);
110             add(u,v,w);//存边
111         }
112         tot=0;dir[1]=0;
113         dfs(1,1);
114         ST(2*n-1);
115         while(q--){
116             int u,v;
117             scanf("%d%d",&u,&v);
118             int lca=LCA(u,v);
119             printf("%d\n",dir[u]+dir[v]-2*dir[lca]);//两点最短距离为每个点到根节点的距离-最近公共祖先到根节点的距离的*2
120         }
121     }
122     return 0;
123 }

 

 

 

就这样,捞咸鱼。。。

༼༎ຶᴗ༎ຶ༽

 

 

posted @ 2018-05-30 23:52  ZERO-  阅读(292)  评论(0编辑  收藏  举报