HDU 1061.Rightmost Digit-规律题 or 快速幂取模

Rightmost Digit

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 55522    Accepted Submission(s): 20987


Problem Description
Given a positive integer N, you should output the most right digit of N^N.
 

 

Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
 

 

Output
For each test case, you should output the rightmost digit of N^N.
 

 

Sample Input
2
3
4
 

 

Sample Output
7
6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
 
 
第一个,找规律,代码:
#include<stdio.h>
typedef long long ll; int main(){ int a[10][4]={{0},{1},{6,2,4,8},{1,3,9,7},{6,4},{5},{6},{1,7,9,3},{6,8,4,2},{1,9}}; ll m; int n,i,h; while(~scanf("%d",&n)){ for(int i=0;i<n;i++){ scanf("%lld",&m); h=m%10; if(h==0||h==1||h==5||h==6) printf("%d",h); else if(h==4||h==9) printf("%d",a[h][m%2]); else printf("%d",a[h][m%4]); printf("\n"); } } return 0; }

 

第二个,快速幂取模,代码:

#include<stdio.h>
typedef long long ll;
ll mod=1e5; ll pow(ll a,ll b){ ll ans
=1;while(b!=0){ if(b%2==1) ans=ans*a%mod; a=a*a%mod; b=b/2; } return ans; } int main(){ ll n,m,ans; while(~scanf("%lld",&n)){ while(n--){ scanf("%lld",&m); ans=pow(m,m)%10; printf("%lld\n",ans); } } return 0; }

 

 

 

posted @ 2017-05-01 17:16  ZERO-  阅读(2094)  评论(4编辑  收藏  举报