2

马拉车——Manacher一篇看上去很靠谱的理解(代码显然易懂)

由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,在字符间插入一个字符(前提这个字符未出现在串里)。举个例子:s="abbahopxpo",转换为s_new="$#a#b#b#a#h#o#p#x#p#o#"(这里的字符 $ 只是为了防止越界,下面代码会有说明),如此,s 里起初有一个偶回文abba和一个奇回文opxpo,被转换为#a#b#b#a##o#p#x#p#o#,长度都转换成了奇数。
  定义一个辅助数组int p[]p[i]表示以s_new[i]为中心的最长回文的半径,例如:

i012345678910111213141516171819
s_new[i] $ # a # b # b # a # h # o # p # x # p #
p[i]   1 2 1 4 5 2 1 2 1 2 1 2 1 2 1 6 1 2 1

可以看出,p[i]-1正好是原字符串中最长回文串的长度。
  Manacher 算法之所以快,就快在对 p 数组的求法上有个捷径,看下图:


  设置两个变量,mx 和 id 。
  mx 代表以s_new[id]为中心的最长回文最右边界,也就是mx=id+p[id]
  假设我们现在求p[i],也就是以s_new[i]为中心的最长回文半径,如果i<mx,如上图,那么:

 

 if (i < mx)  
            p[i] = min(p[2 * id - i], mx - i);

2 * id -i其实就是等于 j ,p[j]表示以s_new[j]为中心的最长回文半径,见上图,因为 i 和 j 关于 id 对称,我们利用p[j]来加快查找。

代码:

#include<iostream>  
#include<string.h>
#include<algorithm>  
using namespace std;

char s[1000];
char s_new[2000];
int p[2000];

int Init()
{
    int len = strlen(s);
    s_new[0] = '$';
    s_new[1] = '#';
    int j = 2;

    for (int i = 0; i < len; i++)
    {
        s_new[j++] = s[i];
        s_new[j++] = '#';
    }

    s_new[j] = '\0';  //别忘了哦  

    return j;  //返回s_new的长度  
}

int Manacher()
{
    int len = Init();  //取得新字符串长度并完成向s_new的转换  
    int maxLen = -1;   //最长回文长度  

    int id;
    int mx = 0;

    for (int i = 1; i < len; i++)
    {
        if (i < mx)
            p[i] = min(p[2 * id - i], mx - i);  //需搞清楚上面那张图含义, mx和2*id-i的含义
        else
            p[i] = 1;

        while (s_new[i - p[i]] == s_new[i + p[i]])  //不需边界判断,因为左有'$',右有'\0'  
            p[i]++;

        //我们每走一步i,都要和mx比较,我们希望mx尽可能的远,这样才能更有机会执行if (i < mx)这句代码,从而提高效率 
        if (mx < i + p[i])  
        {
            id = i;
            mx = i + p[i];
        }

        maxLen = max(maxLen, p[i] - 1);
    }

    return maxLen;
}

int main()
{
    while (printf("请输入字符串:\n"))
    {
        scanf("%s", s);
        printf("最长回文长度为 %d\n\n", Manacher());
    }

    return 0;
}

 

posted @ 2017-10-11 17:42  DDYYZZ  阅读(446)  评论(0编辑  收藏  举报