大数据分析第三周作业(飞机客户数据分析预测以及电信客户流失分析预测)

第一部分——飞机客户数据分析预测

代码一:读取数据

import pandas as pd
datafile='D:\大三下大数据分析\课堂练习第三周\\air_data.csv'
resultfile='D:\大三下大数据分析\课堂练习第三周\\explore.csv'

data = pd.read_csv(datafile,encoding = 'utf-8')

explore = data.describe(percentiles = [],include = 'all').T
explore['null'] = len(data)-explore['count']

explore = explore[['null','max','min']]
explore.columns = [u'空值数',u'最大值',u'最小值']

explore.to_csv(resultfile)
print(explore)

 

 

 

代码二:分析数据并绘制基本图像

from datetime import datetime
import matplotlib.pyplot as plt
ffp=data['FFP_DATE'].apply(lambda x:datetime.strptime(x,'%Y/%m/%d'))
ffp_year=ffp.map(lambda x:x.year)

#绘制各年份会员入会人数直方图
fig=plt.figure(figsize=(8,5))
plt.rcParams['font.sans-serif']='SimHei'
plt.rcParams['axes.unicode_minus']='False'
plt.hist(ffp_year,bins='auto',color='#0504aa')
plt.xlabel('年份')
plt.ylabel('入会人数')
plt.title('各年份会员入会人数(3135)',fontsize=15)
plt.show()
plt.close

#提取会员不同性别人数
male=pd.value_counts(data['GENDER'])['男']
female=pd.value_counts(data['GENDER'])['女']
#绘制会员性别比例饼图
fig=plt.figure(figsize=(10,6))
plt.pie([male,female],labels=['男','女'],colors=['lightskyblue','lightcoral'],autopct='%1.1f%%')
plt.title('会员性别比例(3135)',fontsize=15)
plt.show()
plt.close()

#提取不同级别会员人数
lv_four=pd.value_counts(data['FFP_TIER'])[4]
lv_five=pd.value_counts(data['FFP_TIER'])[5]
lv_six=pd.value_counts(data['FFP_TIER'])[6]
#绘制会员各级别人数条形图
fig=plt.figure(figsize=(8,5))
plt.bar(x=range(3),height=[lv_four,lv_five,lv_six],width=0.4,alpha=0.8,color='skyblue')
plt.xticks([index for index in range(3)],['4','5','6'])
plt.xlabel('会员等级')
plt.ylabel('会员人数')
plt.title('会员各级别人数(3135)',fontsize=15)
plt.show()
plt.close

#提取会员年龄
age=data['AGE'].dropna()
age=age.astype('int64')
#绘制会员年龄分布箱型图
fig=plt.figure(figsize=(5,10))
plt.boxplot(age,
patch_artist=True,
labels=['会员年龄'],
boxprops={'facecolor':'lightblue'})
plt.title('会员年龄分布箱型图(3135)',fontsize=15)
plt.grid(axis='y')
plt.show()
plt.close()

 

 

 

 

代码三:客户乘机数据分析箱型图

lte=data['LAST_TO_END']
fc=data['FLIGHT_COUNT']
sks=data['SEG_KM_SUM']
#绘制最后乘机至结束时长箱型图
fig=plt.figure(figsize=(5,8))

plt.boxplot(lte,
patch_artist=True,
labels=['时长'],
boxprops={'facecolor':'lightblue'})
plt.title('会员最后乘机至结束时长分布箱型图(3135)',fontsize=15)

plt.grid(axis='y')
plt.show()
plt.close

#绘制客户飞行次数箱型图
fig=plt.figure(figsize=(5,8))
plt.boxplot(fc,
patch_artist=True,
labels=['飞行次数'],
boxprops={'facecolor':'lightblue'})

plt.title('会员飞行次数分布箱型图(3135)',fontsize=15)

plt.grid(axis='y')
plt.show()
plt.close

#绘制客户总飞行公里数箱型图
fig=plt.figure(figsize=(5,10))
plt.boxplot(sks,
patch_artist=True,
labels=['总飞行公里数'],
boxprops={'facecolor':'lightblue'})

plt.title('客户总飞行公里数箱型图(3135)',fontsize=15)

plt.grid(axis='y')
plt.show()
plt.close

  

 

 

 

 

代码四:会员积分数据分析直方图

#积分信息类别
#提取会员积分兑换次数
ec=data['EXCHANGE_COUNT']
#绘制会员兑换积分次数直方图
fig=plt.figure(figsize=(8,5))
plt.hist(ec,bins=5,color='#0504aa')
plt.xlabel('兑换次数')
plt.ylabel('会员人数')
plt.title('会员兑换积分次数直方图(3135)',fontsize=15)
plt.show()
plt.close

#提取会员总累计积分
ps=data['Points_Sum']
#绘制会员总累计积分箱型图
fig=plt.figure(figsize=(5,8))
plt.boxplot(ps,
patch_artist=True,
labels=['总累计积分'],
boxprops={'facecolor':'lightblue'})
plt.title('客户总累计积分箱型图(3135)',fontsize=15)
plt.grid(axis='y')
plt.show()
plt.close

 

 

 

代码五:相关矩阵及热力图

#提取属性并合并为新数据集
data_corr=data[['FFP_TIER','FLIGHT_COUNT','LAST_TO_END','SEG_KM_SUM','EXCHANGE_COUNT','Points_Sum']]
age1=data['AGE'].fillna(0)
data_corr['AGE']=age1.astype('int64')
data_corr['ffp_year']=ffp_year

#计算相关性矩阵
dt_corr=data_corr.corr(method='pearson')
print('相关性矩阵为:\n',dt_corr)

#绘制热力图
import seaborn as sns
plt.subplots(figsize=(10,10))
sns.heatmap(dt_corr,annot=True,vmax=1,square=True,cmap='Blues')
plt.show()
plt.close

 

 

 

 

 

代码六:进行数据清洗

import numpy as np
import pandas as pd

datafile ='D:\大三下大数据分析\课堂练习第三周\\air_data.csv'
cleanedfile='D:\大三下大数据分析\课堂练习第三周\\data_cleaned.csv'

#读取数据
airline_data=pd.read_csv(datafile,encoding='utf-8')
print('原始数据的形状为:',airline_data.shape)

#去除票价为空的记录
airline_notnull=airline_data.loc[airline_data['SUM_YR_1'].notnull()&airline_data['SUM_YR_2'].notnull(),:]
print('删除缺失记录后数据的形状为:',airline_notnull.shape)

#只保留票价非零的,或者平均折扣率不为0且总飞行公里数大于0的记录
index1=airline_notnull['SUM_YR_1']!=0
index2=airline_notnull['SUM_YR_2']!=0
index3=(airline_notnull['SEG_KM_SUM']>0)&(airline_notnull['avg_discount']!=0)
index4=airline_notnull['AGE']>100#去除年龄大于100的记录
airline=airline_notnull[(index1|index2)&index3&~index4]
print('数据清洗后数据的形状为:',airline.shape)
airline.to_csv(cleanedfile)

 

 

 

代码七:

import pandas as pd
import numpy as np

#读取数据清洗后的数据
cleanedfile='D:\大三下大数据分析\课堂练习第三周\\data_cleaned.csv'
airline=pd.read_csv(cleanedfile,encoding='utf-8')
#选取需求属性
airline_selection=airline[['FFP_DATE','LOAD_TIME','LAST_TO_END','FLIGHT_COUNT','SEG_KM_SUM','avg_discount']]
print('筛选的属性前5行为:\n',airline_selection.head())

 

 

 

代码八:

#构造属性L
L=pd.to_datetime(airline_selection['LOAD_TIME']) - \
pd.to_datetime(airline_selection['FFP_DATE'])
L=L.astype('str').str.split().str[0]
L=L.astype('int')/30

#合并属性
airline_features=pd.concat([L,airline_selection.iloc[:,2:]],axis=1)
print('构建的LRFMC属性前5行为:\n',airline_features.head())

#数据标准化
from sklearn.preprocessing import StandardScaler
data=StandardScaler().fit_transform(airline_features)
np.savez('D:\大三下大数据分析\课堂练习第三周\\airline_scale.npz',data)
print('标准化后LRFMC 5个属性为:\n',data[:5,:])

 

 

 

代码九:

#K-Means聚类标准化后的数据
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
#读取标准化后的数据
airline_scale=np.load('D:\大三下大数据分析\课堂练习第三周\\airline_scale.npz')['arr_0']
k=5 #确定聚类中心

#构建模型,随机种子设为123
kmeans_model=KMeans(n_clusters=k,random_state=123)
fit_kmeans=kmeans_model.fit(airline_scale) #模型训练

#查看聚类结果
kmeans_cc=kmeans_model.cluster_centers_#聚类中心
print('各类聚类中心为:\n',kmeans_cc)
kmeans_labels=kmeans_model.labels_#样本的类别标签
print('各样本的类别标签为:\n',kmeans_labels)
r1=pd.Series(kmeans_model.labels_).value_counts()#统计不同类别样本的数目
print('最终每个类别的数目为:\n',r1)
#输出聚类分群的结果
cluster_center=pd.DataFrame(kmeans_model.cluster_centers_,\
columns=['ZL','ZR','ZF','ZM','ZC'])#将聚类中心放在数据框中
cluster_center.index=pd.DataFrame(kmeans_model.labels_ ).\
drop_duplicates().iloc[:,0]
print(cluster_center)

 

 

 

代码十:绘制客户分群雷达图

%matplotlib inline
import matplotlib.pyplot as plt

labels=['ZL','ZR','ZF','ZM','ZC']
legen=['客户群'+str(i+1) for i in cluster_center.index]#客户群命名
lstype=['-','--',(0,(3,5,1,5,1,5)),':','-.']
kinds=list(cluster_center.iloc[:,0])
#由于雷达图要保证数据闭合,因此再添加L列,并转换为np.ndarry
cluster_center=pd.concat([cluster_center,cluster_center[['ZL']]],axis=1)
centers=np.array(cluster_center.iloc[:,0:])

#分割圆周长,并让其闭合
n=len(labels)
angle=np.linspace(0,2*np.pi,n,endpoint=False)
angle=np.concatenate((angle,[angle[0]]))
feature=np.concatenate((feature,[feature[0]]))

#绘图
fig=plt.figure(figsize=(8,6))
ax=fig.add_subplot(111,polar=True)
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
#画线
for i in range(len(kinds)):
ax.plot(angle,centers[i],linestyle=lstype[i],linewidth=2,label=kinds[i])
#添加属性标签
ax.set_thetagrids(angle* 180/np.pi, labels)
plt.title('客户特征分析雷达图(3135)',fontsize=15)
plt.legend(legen)
plt.show()
plt.close

 

 

 

 

第二部分:电信客户流失分析预测

 代码1:读取并简单分析数据

import pandas as pd
data=pd.read_csv('D:\大三下大数据分析\课堂练习第三周\客户流失数据\\WA_Fn-UseC_-Telco-Customer-Churn.csv')# 加载数据
data.shape  # 查看数据大小

data.head()

 

 

 data.dtypes# 查看数据类型

 

 data.info()         # 打印摘要

 

 data.describe()      # 描述性统计信息

 

 

代码2:客户流失数据分析

 

 

 

User_info=data.groupby(by="Churn")["Churn"].count()
User_info=pd.DataFrame(User_info)
User_info

 

 

 代码3:绘制电信客户性别饼图

plt.rcParams['font.sans-serif']='SimHei'
plt.rcParams['axes.unicode_minus']='False'
#提取会员不同性别人数
male=pd.value_counts(data['gender'])['Female']
female=pd.value_counts(data['gender'])['Male']
#绘制会员性别比例饼图
fig=plt.figure(figsize=(10,6))
plt.pie([male,female],labels=['男','女'],colors=['lightskyblue','lightcoral'],autopct='%1.1f%%')
plt.title('电信用户性别比例(3135)',fontsize=15)
plt.show()
plt.close()

 

 

 

 

 代码4:处理缺失值和归一化处理

#TotalCharges表示总费用,这里为对象类型,需要转换为float类型
'''
convert_numeric=True表示强制转换数字(包括字符串),不可转换为NaN---已被弃用
您可以根据需要替换所有非数字值,以NaN使用with函数中的apply列,然后替换为by 并将所有值最后替换为s by :
df to_numeric 0 fillna int astype
'''
data['TotalCharges']=data['TotalCharges'].apply(pd.to_numeric, errors='coerce').fillna(0).astype(int)
print(data['TotalCharges'].dtypes)
#
print(pd.isnull(data['TotalCharges']).sum()) #再次查找是否存在缺失值

#处理缺失值

print(data.dropna(inplace=True)) #删除掉缺失值所在的行
print(data.shape)

#数据归一化处理
#对Churn列中的YES和No分别用1和0替换,方便后续处理
data['Churn'].replace(to_replace='Yes',value=1,inplace=True)
data['Churn'].replace(to_replace='No',value=0,inplace=True)
print(data['Churn'].head())

 

 

 

代码5:绘制客户流失情况饼图

churnvalue=data[ "Churn" ].value_counts()
labels=data["Churn"].value_counts().index

rcParams["figure.figsize"]=6,6
plt.pie(churnvalue,labels=labels,colors=["blue","yellow"],explode=(0.1,0),autopct='%1.1f', shadow=True)
plt.title( '客户流失情况饼图(3135) ',fontsize=15)
plt.show()

 

 

代码6:客户流失影响直方图

plt.figure(figsize=(10,10))
plt.subplot(2,2,1)
gender=sns.countplot(x='gender',hue='Churn',data=telcon,palette='Set2') #palette参数表示设置颜色,设置为主颜色paste12
plt.xlabel('性别')
plt.title('不同性别客户流失直方图(3135) ',fontsize=15)

plt.subplot(2,2,2)
seniorcitizen=sns.countplot(x='SeniorCitizen',hue='Churn',data=telcon,palette='Set2')
plt.xlabel('老年人')
plt.title('老年人客户流失直方图(3135) ',fontsize=15)

plt.subplot(2,2,3)
partner=sns.countplot(x='Partner',hue='Churn',data=telcon,palette='Set2')
plt.xlabel('配偶')
plt.title('是否有配偶客户流失直方图(3135) ',fontsize=15)

plt.subplot(2,2,4)
dependents=sns.countplot(x='Dependents',hue='Churn',data=telcon,palette='Set2')
plt.xlabel('亲属')
plt.title('亲属客户流失直方图(3135) ',fontsize=15)
plt.show()

 

 

代码7:特征值

charges=telcon.iloc[:,1:20]
# #对特征进行编码
# #离散特征的编码分为两种情况:
# #1.离散特征的取值之间没有太大意义,比如color:[red,blue],那么就使用one-hot编码
# #2.离散特征的取值有大小意义,比如size:[X,XL,XXL],那么就使用数值的映射【X:1,XL:2,XXL:3】
corrdf=charges.apply(lambda x:pd.factorize(x)[0])
print(corrdf.head())

 

 

代码8:热力图

charges=telcon.iloc[:,1:20]
corrdf=charges.apply(lambda x:pd.factorize(x)[0])
corr=corrdf.corr()
# '''
# heatmap 使用热力图展示系数矩阵情况
# linewidths 热力图矩阵之间的间隔大小
# annot 设定是否显示每个色块系数值
# '''
plt.figure(figsize=(30,20))
plt.title('相关系数热力图(3135) ',fontsize=15)
ax=sns.heatmap(corr,xticklabels=corr.columns,yticklabels=corr.columns,linewidths=0.2,cmap='YlGnBu',annot=True)
plt.show()

 

 

代码9:电信用户是否流失与各变量之间的相关性

plt.figure(figsize=(15,8))
tel_dummies.corr()['Churn'].sort_values(ascending=False).plot(kind='bar')
plt.title('电信用户是否流失与各变量之间的相关性图(3135) ',fontsize=15)
plt.show()

 

 

代码10:网络安全服务、在线备份业务、设备保护业务、技术支持服务、网络电视、网络电影和无互联网服务对客户流失率的影响

covariable=['OnlineSecurity','OnlineBackup','DeviceProtection','TechSupport','StreamingTV','StreamingMovies']
plt.figure(figsize=(17,10))
for i,item in enumerate(covariable):
plt.subplot(2,3,(i+1))
ax=sns.countplot(x=item,hue='Churn',data=telcon,palette='Set2',order=['Yes','No','No internet service'])
plt.xlabel(str(item))
plt.title(str(item)+'对客户流失的影响(3135) ',fontsize=15)
i=i+1
plt.show()

 

 

代码11:绘制签订合同方式对客户流失率的影响直方图

ax=sns.barplot(x='Contract',y='Churn',data=telcon,palette='Set2',order=['Month-to-month','One year','Two year'])
# seaborn 的 barplot() 利用矩阵条的高度反映数值变量的集中趋势,bar plot 展示的是某种变量分布的平均值,
# 当需要精确观察每类变量的分布趋势,boxplot 与 violinplot 往往是更好的选择。
plt.title('签订合同方式对客户流失率的影响(3135) ',fontsize=15)
plt.show()

 

 

代码12:绘制付款方式对客户流失率的影响直方图

plt.figure(figsize=(10,5))
ax=sns.barplot(x='PaymentMethod',y='Churn',data=telcon,palette='Set2',order=['Bank transfer (automatic)','Credit card (automatic)','Electronic check','Mailed check'])
plt.title('付款方式对客户流失率的影响(3135) ',fontsize=15)
plt.show()

 

posted @   爱喝肥宅快乐水的YYX  阅读(109)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
点击右上角即可分享
微信分享提示