bzoj 4870: [Shoi2017]组合数问题

Description

题面

Solution

考虑这个式子的组合意义:
\(n*k\) 个球中取若干个球,使得球的数量 \(\%k=r\) 的方案数
可以转化为 \(DP\) 模型,设 \(f[i][j]\) 表示前 \(i\) 个步,取得球的数量 \(\%k=j\) 的方案数
\(f[i][j]=f[i-1][j]+f[i-1][j-1]\)
发现这个东西就是杨辉三角(胡话,此题无关)
这样就可以做 \(O(k^3log)\) 了,并且可以过了

网上还有一种做法:
\(f[i*2][a+b]=\sum f[i][a]*f[i][b]\)
然后矩阵就变成了一个行向量了,复杂度优化成了 \(O(k^2log)\)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=51;
int mod,k,r;ll n;
struct mat{
	int a[N];
	mat(){memset(a,0,sizeof(a));}
	inline mat operator *(const mat &p){
		mat ret;
		for(int i=0;i<k;i++)
			for(int j=0;j<k;j++)
				ret.a[(i+j)%k]=(ret.a[(i+j)%k]+1ll*a[i]*p.a[j])%mod;
		return ret;
	}
}S,T;
inline int qm(int x,int k){
	ll sum=1;
	while(k){
		if(k&1)sum=1ll*x*sum%mod;
		x=1ll*x*x%mod;k>>=1;
	}return sum;
}
int main(){
  freopen("pp.in","r",stdin);
  freopen("pp.out","w",stdout);
  cin>>n>>mod>>k>>r;
  if(k==1)printf("%d\n",qm(2,n)),exit(0);
  S.a[0]=1;S.a[1]=1;T=S;

  n=n*k-1;
  while(n){
	  if(n&1)S=S*T;
	  T=T*T;n>>=1;
  }
  printf("%d\n",S.a[r]);
  return 0;
}
    
posted @ 2018-04-21 17:08  PIPIBoss  阅读(147)  评论(0编辑  收藏  举报