bzoj 3998: [TJOI2015]弦论

Description

对于一个给定长度为N的字符串,求它的第K小子串是什么。
Input
第一行是一个仅由小写英文字母构成的字符串S
第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个。T=1则表示不同位置的相同子串算作多个。K的意义如题所述。
Output
输出仅一行,为一个数字串,为第K小的子串。如果子串数目不足K个,则输出-1

solution

SPOJ7258 比较类似,只不过多了一个不同位置算多次,用到 SPOJNSUBSTR 的方法,因为父亲节点是当前节点的最大子集,所以在父亲节点出现过的,在当前节点一定出现过,所以直接将 \(size\) 累加到父亲节点上即可.
注意这个时候跳的过程需要做一些改变,每跳到一个位置 \(k\) 要减去当前节点的 \(size\),因为做了累加操作,也就是说含有这个子串的个数不止\(1\),当\(k<=0\)时即统计完毕

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=1200005;
char s[N];int fa[N],n,ch[N][27],T,K,len[N],cnt=1,size[N],t[N],p,cur=1;
void build(int c,int id){
    p=cur;cur=++cnt;len[cur]=id;
    for(;p && !ch[p][c];p=fa[p])ch[p][c]=cur;
    if(!ch[p][c])fa[cur]=1;
    else{
        int q=ch[p][c];
        if(len[p]+1==len[q])fa[cur]=q;
        else{
            int nt=++cnt;len[nt]=len[p]+1;
            memcpy(ch[nt],ch[q],sizeof(ch[q]));
            fa[nt]=fa[q];fa[q]=fa[cur]=nt;
            for(;ch[p][c]==q;p=fa[p])ch[p][c]=nt;
        }
    }
    size[cur]=1;
}
int c[N],sa[N];
void priwork(){
    for(int i=1;i<=cnt;i++)c[len[i]]++;
    for(int i=1;i<=n;i++)c[i]+=c[i-1];
    for(int i=cnt;i>=1;i--)sa[c[len[i]]--]=i;
    for(RG int i=cnt,x;i>=1;i--){
        x=sa[i];
        if(T)size[fa[x]]+=size[x];
        else size[x]=1;
        if(x!=1)t[x]=size[x];
        for(RG int j=0;j<=25;j++)t[x]+=t[ch[x][j]];
    }
}
void solve(){
    RG int x=1,u,i;
    while(K>0){
        for(i=0;i<=25;i++){
            if(!ch[x][i])continue;
            u=ch[x][i];
            if(t[u]>=K){
                putchar(i+'a');
                x=u;K-=size[x];break;
            }
            else K-=t[u];
        }
    }
}
void work()
{
    scanf("%s%d%d",s+1,&T,&K);
    n=strlen(s+1);
    for(int i=1;i<=n;i++)build(s[i]-'a',i);
    priwork();
    if(t[1]<K){puts("-1");return ;}
    solve();
}

int main()
{
	work();
	return 0;
}

posted @ 2017-10-15 12:12  PIPIBoss  阅读(163)  评论(0编辑  收藏  举报