bzoj 1875: [SDOI2009]HH去散步

Description

HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离。 但
是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回。 又因为HH是个喜欢变化的人,所以他每
天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法。 现在给你学校的地图(假设每条路的长度都
是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径
Input

第一行:五个整数N,M,t,A,B。
N表示学校里的路口的个数
M表示学校里的 路的条数
t表示HH想要散步的距离
A表示散步的出发点
B则表示散步的终点。
接下来M行
每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。
数据保证Ai != Bi,但不保证任意两个路口之间至多只有一条路相连接。
路口编号从0到N -1。
同一行内所有数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。
答案模45989。
N ≤ 20,M ≤ 60,t ≤ 2^30,0 ≤ A,B
Output

一行,表示答案。

Sample Input

4 5 3 0 0

0 1

0 2

0 3

2 1

3 2
Sample Output

4

题解:
这题卡常啊,居然矩乘可以TLE.
本题大概思路如下:
这题因为有不能回走的要求,所以不能向平时那样直接对邻接矩阵做矩乘了,需要对边做矩乘,在矩阵中把自己和自己的位置设为0,这样可以保证不会往回走,并且注意要虚拟一个初始节点连向输入的S,最后统计答案直接将连到t的边的方案数相加即可

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=55,M=150;
int n,m,T,s,t,mod=45989,map[M][M],head[N],to[M],nxt[M],num=1;
void init(int x,int y){
    nxt[++num]=head[x];to[num]=y;head[x]=num;
}
struct mat{
    int a[M][M];
    mat(){}
    mat(int mp[M][M]){
        for(RG int i=1;i<=num;i++)
            for(RG int j=1;j<=num;j++)a[i][j]=mp[i][j];
    }
    mat operator *(const mat &p)const{
        mat tmp;
        for(RG int i=1;i<=num;i++)
            for(RG int j=1;j<=num;j++){
                tmp.a[i][j]=0;
                for(RG int k=1;k<=num;k++){
                    tmp.a[i][j]+=(a[i][k]*p.a[k][j])%mod;
                    if(tmp.a[i][j]>=mod)tmp.a[i][j]-=mod;
                }
            }
        return tmp;
    }
};
void work()
{
    scanf("%d%d%d%d%d",&n,&m,&T,&s,&t);
    s++;t++;T--;
    int x,y;
    for(int i=1;i<=m;i++){
        scanf("%d%d",&x,&y);
        x++;y++;
        init(x,y);init(y,x);
    }
    for(int i=head[s];i;i=nxt[i])
        map[1][i]++;
    for(int i=2;i<=num;i++){
        for(int j=head[to[i]];j;j=nxt[j])
            if(i!=(j^1))map[i][j]++;
    }
    mat S=mat(map),K=mat(map);
    while(T){
        if(T&1)S=S*K;
        K=K*K;T>>=1;
    }
    int ret=0;
    for(RG int i=2;i<=num;i++){
        if(to[i]==t){
            ret+=S.a[1][i];
            if(ret>=mod)ret-=mod;
        }
    }
    printf("%d\n",ret);
}

int main()
{
    work();
    return 0;
}
posted @ 2017-08-24 20:21  PIPIBoss  阅读(159)  评论(0编辑  收藏  举报