【ZOJ 3609】Modular Inverse 最小乘法逆元
The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m)
. This is equivalent to ax≡1 (mod m)
.
Input
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
Output
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
Sample Input
3 3 11 4 12 5 13
Sample Output
4 Not Exist 8
题解:
最小乘法逆元:由ax≡1 (mod m)得:
转化为解线性方程ax+by=1
需要注意的地方:最小解取模时不能写成(x%t+t)%t 因为此题要的是正数解 这样写有时会输出0
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<cmath> 6 using namespace std; 7 typedef long long ll; 8 ll exgcd(ll a,ll b,ll &x,ll &y) 9 { 10 if(!b) 11 { 12 x=1;y=0; 13 return a; 14 } 15 ll r=exgcd(b,a%b,x,y); 16 ll t=x; 17 x=y; 18 y=t-a/b*y; 19 return r; 20 } 21 void work(ll a,ll b,ll c) 22 { 23 ll x,y; 24 ll r=exgcd(a,b,x,y); 25 if(c%r!=0){ 26 printf("Not Exist\n"); 27 return ; 28 } 29 x*=c/r; 30 ll t=b/r; 31 if(t<0)t=-t; 32 x%=t; 33 if(x<=0)x+=t; 34 printf("%lld\n",x); 35 } 36 int main() 37 { 38 int T; 39 ll a,b; 40 scanf("%d",&T); 41 while(T--){ 42 scanf("%lld%lld",&a,&b); 43 work(a,b,1); 44 } 45 return 0; 46 }