HDU 5528 反演
$f(m)=\sum\limits_{i=1}^{m-1}\sum\limits_{j=1}^{m-1}[(ij,m) \ne m]$,$g(n)=\sum\limits_{m|n}f(m)$,$1 \le n \le 10^9$,求$g(n)$模$2^{64}$。
要求为$i j ∤ m$,说明$ij$不为$m$的倍数,但是可以有公共因子,直接求很麻烦,不如先反着来求不符合的,最后再减掉。然后就是化式子,枚举一个数$(m, i)=d$,则另一个数满足$\frac{m}{d}|j$,二者各自有$\varphi(\frac{m}{d})$和$d$个数量,继续化简,之后可以观察到右半式就是某很经典的欧拉函数的结论,然后预处理素数,素因子分解计算下贡献,最后左右两个半式相减就行了。
\begin{eqnarray*} g(n) &=& \sum\limits_{m|n}(m^2-\sum\limits_{i=1}^{m-1}\sum\limits_{j=1}^{m-1}[(ij,m) = m]) \newline &=&\sum\limits_{m|n} {m^2} - \sum\limits_{m|n} \sum\limits_{d|m} d\varphi \left( \frac{m}{d} \right) \newline &=& \sum\limits_{m|n} {m^2} - \sum\limits_{d|n}d {\sum\limits_{\frac{m}{d}|\frac{n}{d}} {\varphi \left( {\frac{m}{d}} \right)} } \newline &=& \sum\limits_{m|n} {m^2} - \sum\limits_{d|n}{d \frac{n}{d}} \newline &=& \sum\limits_{m|n} {m^2} - n \sum\limits_{d|n}{1} = \sum\limits_{m|n} {m^2} - n \tau(n) \end{eqnarray*}
还有另外一种方法就是直接利用积性函数的性质,再用欧拉函数化简。得到的最后式子是一样的。
/** @Date : 2017-10-20 14:18:28 * @FileName: HDU 5528 反演.cppc * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL unsigned long long #define PII pair<int ,int> #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 5e4+20; const double eps = 1e-8; LL pri[N]; bool vis[N]; int c = 0; void prime() { MMF(vis); for(int i = 2; i < N; i++) { if(!vis[i]) pri[c++] = i; for(int j = 0; j < c && i * pri[j] < N; j++) { vis[i * pri[j]] = 1; if(i % pri[j] == 0) break; } } } int main() { prime(); int T; scanf("%d", &T); while(T--) { LL n; scanf("%llu", &n); LL t = n; LL sum = 1ULL, dis = 1ULL; for(int i = 0; i < c && pri[i] * pri[i] <= t; i++) { if(t % pri[i] == 0) { LL cnt = 1; LL tmp = 1ULL; LL k = 1ULL; while(t % pri[i] == 0) t /= pri[i], cnt++; for(int j = 0; j < cnt - 1; j++) { tmp *= pri[i]; k += (LL)tmp * tmp;// ()* m^2 } sum *= k; dis *= cnt; } } if(t > 1) { sum *= t * t + 1; dis *= 2ULL; } dis *= n; printf("%llu\n", sum - dis); } return 0; }