HDU 5528 反演

$f(m)=\sum\limits_{i=1}^{m-1}\sum\limits_{j=1}^{m-1}[(ij,m) \ne m]$,$g(n)=\sum\limits_{m|n}f(m)$,$1 \le n \le 10^9$,求$g(n)$模$2^{64}$。

要求为$i j ∤ m$,说明$ij$不为$m$的倍数,但是可以有公共因子,直接求很麻烦,不如先反着来求不符合的,最后再减掉。然后就是化式子,枚举一个数$(m, i)=d$,则另一个数满足$\frac{m}{d}|j$,二者各自有$\varphi(\frac{m}{d})$和$d$个数量,继续化简,之后可以观察到右半式就是某很经典的欧拉函数的结论,然后预处理素数,素因子分解计算下贡献,最后左右两个半式相减就行了。

\begin{eqnarray*} g(n) &=& \sum\limits_{m|n}(m^2-\sum\limits_{i=1}^{m-1}\sum\limits_{j=1}^{m-1}[(ij,m) = m]) \newline &=&\sum\limits_{m|n} {m^2} - \sum\limits_{m|n} \sum\limits_{d|m} d\varphi \left( \frac{m}{d} \right) \newline &=& \sum\limits_{m|n} {m^2} - \sum\limits_{d|n}d {\sum\limits_{\frac{m}{d}|\frac{n}{d}} {\varphi \left( {\frac{m}{d}} \right)} } \newline &=& \sum\limits_{m|n} {m^2} - \sum\limits_{d|n}{d \frac{n}{d}} \newline &=& \sum\limits_{m|n} {m^2} - n \sum\limits_{d|n}{1} = \sum\limits_{m|n} {m^2} - n \tau(n) \end{eqnarray*}

还有另外一种方法就是直接利用积性函数的性质,再用欧拉函数化简。得到的最后式子是一样的。

 

 

 

/** @Date    : 2017-10-20 14:18:28
  * @FileName: HDU 5528 反演.cppc
  * @Platform: Windows
  * @Author  : Lweleth (SoungEarlf@gmail.com)
  * @Link    : https://github.com/
  * @Version : $Id$
  */
#include <bits/stdc++.h>
#define LL unsigned long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;

const int INF = 0x3f3f3f3f;
const int N = 5e4+20;
const double eps = 1e-8;

LL pri[N];
bool vis[N];
int c = 0;

void prime()
{
	MMF(vis);
	for(int i = 2; i < N; i++)
	{
		if(!vis[i]) pri[c++] = i;
		for(int j = 0; j < c && i * pri[j] < N; j++)
		{
			vis[i * pri[j]] = 1;
			if(i % pri[j] == 0) break;
		}
	}
} 



int main()
{
	prime();
	int T;
	scanf("%d", &T);
	while(T--)
	{
		LL n;
		scanf("%llu", &n);
		LL t = n;
		LL sum = 1ULL, dis = 1ULL;
		for(int i = 0; i < c && pri[i] * pri[i] <= t; i++)
		{
			if(t % pri[i] == 0)
			{
				LL cnt = 1;
				LL tmp = 1ULL;
				LL k = 1ULL;
				while(t % pri[i] == 0)
					t /= pri[i], cnt++;

				for(int j = 0; j < cnt - 1; j++)
				{
					tmp *= pri[i];
					k += (LL)tmp * tmp;// ()* m^2
				}
				sum *= k;
				dis *= cnt;
			}	
		}
		if(t > 1)
		{
			sum *= t * t + 1; 
			dis *= 2ULL;
		}
		dis *= n;
		printf("%llu\n", sum - dis);
	}
    return 0;
}
posted @ 2017-10-20 23:04  Lweleth  阅读(303)  评论(0编辑  收藏  举报