POJ 2932 圆扫描线
求n个圆中没有被包含的圆。模仿扫描线从左往右扫,到左边界此时如有3个交点,则有3种情况,以此判定该圆是否被离它最近的圆包含,而交点和最近的圆可以用以y高度排序的Set来维护。因此每次到左边界插入该圆,找该圆最近的两个圆(上方和下方)判断是否包含,到右边界则从Set中删除该圆。
/** @Date : 2017-08-13 17:27:55 * @FileName: POJ 2932 圆扫描线.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <stdio.h> #include <iostream> #include <string.h> #include <algorithm> #include <utility> #include <vector> #include <map> #include <set> #include <string> #include <stack> #include <queue> #include <math.h> #define LL long long #define PII pair<int ,int> #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-8; int n; struct circle { double x, y, r; circle(){} circle(double _x, double _y, double _r){x = _x, y = _y, r = _r;} }; circle c[N]; pair<double, int>p[N*2]; int ans[N]; int isinside(int a, int b) { double dx = c[a].x - c[b].x; double dy = c[a].y - c[b].y; return dx * dx + dy * dy <= c[b].r * c[b].r; } int main() { scanf("%d", &n); for(int i = 0; i < n; i++) { double x, y, r; scanf("%lf%lf%lf", &r, &x, &y); c[i] = circle(x, y, r); } for(int i = 0; i < n; i++) { p[i*2] = MP(c[i].x - c[i].r, i); p[i*2 + 1] = MP(c[i].x + c[i].r, i + n); } sort(p, p + 2 * n); set<pair<double, int> >q; int cnt = 0; for(int i = 0; i < 2 * n; i++) { if(p[i].se < n) { set<pair<double, int> >::iterator it; /*auto */it = q.lower_bound(MP(c[p[i].se].y, p[i].se)); if(it != q.end() && isinside(p[i].se, it->se) || it != q.begin()&&isinside(p[i].se, (--it)->se)) continue; q.insert(MP(c[p[i].se].y, p[i].se)); ans[cnt++] = p[i].se; } else q.erase(MP(c[p[i].se%n].y, p[i].se%n)); } sort(ans, ans + cnt); printf("%d\n", cnt); for(int i = 0; i < cnt; i++) printf("%d%s", ans[i] + 1, i==cnt-1?"\n":" "); return 0; }