HDU 2685 GCD推导
求$(a^n-1,a^m-1) \mod k$,自己手推,或者直接引用结论$(a^n-1,a^m-1) \equiv a^{(n,m)}-1 \mod k$
/** @Date : 2017-09-21 21:41:26 * @FileName: HDU 2685 结论 定理 推导.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL long long #define PII pair<int ,int> #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-8; LL fpow(LL a, LL n, LL mod) { LL res = 1; while(n) { if(n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } int main() { int T; cin >> T; while(T--) { LL a, m, n, k; scanf("%lld%lld%lld%lld", &a, &m, &n, &k); printf("%lld\n", (fpow(a,__gcd(m,n),k) - 1 + k) % k); } return 0; }